Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Exp Cell Res ; 441(1): 114152, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971518

RESUMEN

At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.


Asunto(s)
Apoptosis , Condrocitos , Metilación de ADN , Mitocondrias , Regiones Promotoras Genéticas , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , Apoptosis/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Condrocitos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Regiones Promotoras Genéticas/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/patología , Masculino , Persona de Mediana Edad , Femenino , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética
2.
Biomed Chromatogr ; 38(9): e5945, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973475

RESUMEN

To investigate predictive biomarkers that could be used to identify patients' response to treatment, plasma metabolomics and proteomics analyses were performed in Kashin-Beck disease (KBD) patients treated with Fufang Duzhong Jiangu Granules (FDJG). Plasma was collected from 12 KBD patients before treatment and 1 month after FDJG treatment. LC-MS and olink proteomics were employed for obtaining plasma metabolomics profiling and inflammatory protein profiles. Patients were classified into responders and non-responders based on drug efficacy. Enrichment analyses of differential metabolites and proteins of the responders at baseline and after treatment were conducted to study the mechanism of drug action. Differential metabolites and proteins between the two groups were screened as biomarkers to predict the drug efficacy. The receiver operating characteristic curve was used to evaluate the prediction accuracy of biomarkers. The changes in metabolites and inflammatory proteins in responders after treatment reflected the mechanism of FDJG treatment for KBD, which may act on glycerophospholipid metabolism, d-glutamine and d-glutamate metabolism, nitrogen metabolism and NF-kappa B signaling pathway. Three metabolites were identified as potential predictors: N-undecanoylglycine, ß-aminopropionitrile and PC [18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)]. For inflammatory protein, interleukin-8 was identified as a predictive biomarker to detect responders. Combined use of these four biomarkers had high predictive ability (area under the curve = 0.972).


Asunto(s)
Biomarcadores , Medicamentos Herbarios Chinos , Enfermedad de Kashin-Beck , Metabolómica , Humanos , Enfermedad de Kashin-Beck/sangre , Enfermedad de Kashin-Beck/tratamiento farmacológico , Masculino , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Metabolómica/métodos , Proteómica/métodos , Metaboloma/efectos de los fármacos , Adulto , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Resultado del Tratamiento , Cromatografía Liquida/métodos
3.
Toxicology ; 506: 153858, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825033

RESUMEN

This study aims to investigate the impact of T-2 toxin on the regulation of downstream target genes and signaling pathways through exosome-released miRNA in the development of cartilage damage in Kashin-Beck disease (KBD). Serum samples from KBD patients and supernatant from C28/I2 cells treated with T-2 toxin were collected for the purpose of comparing the differential expression of exosomal miRNA using absolute quantitative miRNA-seq. Target genes of differential exosomal miRNAs were identified using Targetscan and Miranda databases, followed by GO and KEGG enrichment analyses. Validation of key indicators of chondrocyte injury in KBD was conducted using Real-time quantitative PCR (RT-qPCR) and Immunohistochemical staining (IHC). A total of 20 exosomal miRNAs related to KBD were identified in serum, and 13 in chondrocytes (C28/I2). The identified exosomal miRNAs targeted 48,459 and 60,612 genes, primarily enriched in cell organelles and membranes, cell differentiation, and cytoskeleton in the serum, and the cytoplasm and nucleus, metal ion binding in chondrocyte (C28/I2). The results of the KEGG enrichment analysis indicated that the Ras signaling pathway may play a crucial role in the pathogenesis of KBD. Specifically, the upregulation of hsa-miR-181a-5p and hsa-miR-21-3p, along with the downregulation of hsa-miR-152-3p and hsa-miR-186-5p, were observed. Additionally, T-2 toxin intervention led to a significant downregulation of RALA, REL, and MAPK10 expression. Furthermore, the protein levels of RALA, REL, and MAPK10 were notably decreased in the superficial and middle layers of cartilage tissues from KBD. The induction of differential expression of chondrocyte exosomal miRNAs by T-2 toxin results in the collective regulation of target genes RALA, REL, and MAPK10, ultimately mediating the Ras signaling pathway and causing a disruption in chondrocyte extracellular matrix metabolism, leading to chondrocyte injury.


Asunto(s)
Condrocitos , Exosomas , MicroARNs , Transducción de Señal , Toxina T-2 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/genética , Transducción de Señal/efectos de los fármacos , Toxina T-2/toxicidad , Masculino , Enfermedad de Kashin-Beck/inducido químicamente , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/patología , Enfermedad de Kashin-Beck/metabolismo , Femenino , Persona de Mediana Edad , Proteínas ras/metabolismo , Proteínas ras/genética , Adulto , Línea Celular
4.
Food Chem Toxicol ; 189: 114724, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734200

RESUMEN

Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.


Asunto(s)
Condrocitos , Matriz Extracelular , Células Madre Pluripotentes Inducidas , Receptores Notch , Transducción de Señal , Toxina T-2 , Humanos , Transducción de Señal/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Toxina T-2/toxicidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Receptores Notch/metabolismo , Receptores Notch/genética , Enfermedad de Kashin-Beck/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/citología , Cartílago Articular/efectos de los fármacos , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Células Cultivadas
5.
Toxicon ; 245: 107767, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768830

RESUMEN

Kashin-Beck Disease (KBD), an osteoarticular disorder, is potentially influenced by several factors, among which selenium deficiency and HT-2 mycotoxin exposure are considered significant. However, the combined effect of these factors on femoral development remains unclear, Conducted over eight weeks on forty-eight male mice categorized into control, selenium-deficient, and HT-2 toxin-exposed groups, including dual-exposure sets, this study comprehensively monitored body weight, bone metabolism markers, and cellular health. Employing biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy (TEM), we unearthed a reduction in body weight due to HT-2 toxin alone, with selenium deficiency exacerbating these effects synergistically. Our results unveil that both factors independently affect bone metabolism, yet their confluence leads to a pronounced degradation of bone health parameters, including alterations in calcium, phosphorus, and vitamin D levels, alongside marked changes in osteoblast and osteoclast activity and bone cell structures. The notable damage to femoral cortical and trabecular architectures underscores the perilous interplay between dietary selenium absence and HT-2 toxin presence, necessitating a deeper understanding of their separate and joint effects on bone integrity. These discoveries underscore the imperative for a nuanced approach to toxicology research and public health policy, highlighting the pivotal influence of environmental and nutritional factors on skeletal well-being.


Asunto(s)
Fémur , Selenio , Toxina T-2 , Animales , Selenio/deficiencia , Ratones , Masculino , Toxina T-2/toxicidad , Enfermedad de Kashin-Beck , Microtomografía por Rayos X
6.
Nutrients ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794687

RESUMEN

It has been strongly suggested that selenium deficiency and T-2 toxin contamination have a strong relationship with the occurrence and development of Kashin-Beck disease (KBD). In order to provide information for understanding the high prevalence of KBD in Tibet, this study collected the responses to a cubital venous blood and dietary questionnaire of 125 subjects including 75 KBD patients and 50 healthy controls in a KBD-prevalent county (Luolong County) in Tibet, China. A total of 10 household local families were randomly selected in this area, and local diet samples of brick tea, Zanba powder, milk residue, and hulless Barley were collected from these residents. Selenium content in blood was detected by inductively coupled plasma mass spectrometry (ICP-MS). The T-2 toxin contamination level in food sample was assayed using an ELISA kit. The selenium levels of patients and controls were 42.0 ± 19.8 and 56.06 ± 22.4 µg/L, respectively. The serum selenium level in controls was higher than that in patients, but there was no significant difference, and the serum selenium level both in patients and controls in Tibet was lower than the normal range. The results of the dietary survey showed that the number of respondents who consumed butter tea was large; 46.67% of patients indicated that they drank buttered tea every day, which was significantly higher than in controls. The contents of T-2 toxin in Zanba powder, milk residue, hulless barley and drinking water samples were below the detection limit (0.05 µg/kg); this result was labeled Tr. Unexpectedly, the contents of T-2 toxin in brick tea were higher, with average levels of 424 ± 56 µg/kg in Detong village and 396 ± 24 µg/kg in Langcuo village. For the first time, we report the presence of an extremely high concentration of T-2 toxin in brick tea of Tibet.


Asunto(s)
Contaminación de Alimentos , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Dieta/estadística & datos numéricos , Encuestas sobre Dietas , Contaminación de Alimentos/análisis , Enfermedad de Kashin-Beck/epidemiología , Enfermedad de Kashin-Beck/sangre , Prevalencia , Selenio/sangre , Toxina T-2/análisis , Té/química , Tibet/epidemiología
7.
Osteoarthritis Cartilage ; 32(10): 1283-1294, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815737

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.


Asunto(s)
Autofagia , Condrocitos , Sulfatos de Condroitina , Enfermedad de Kashin-Beck , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Toxina T-2 , Serina-Treonina Quinasas TOR , Toxina T-2/toxicidad , Autofagia/efectos de los fármacos , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sulfatos de Condroitina/farmacología , Selenio/farmacología , Línea Celular
8.
Ecotoxicol Environ Saf ; 279: 116503, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810288

RESUMEN

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Condrocitos , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , Serina-Treonina Quinasas TOR , Toxina T-2/toxicidad , Toxina T-2/análogos & derivados , Autofagia/efectos de los fármacos , Enfermedad de Kashin-Beck/patología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Masculino , Condrocitos/efectos de los fármacos , Condrocitos/patología , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Femenino , Persona de Mediana Edad , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Adulto , Péptidos y Proteínas de Señalización Intracelular
9.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673933

RESUMEN

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Asunto(s)
Enfermedad de Kashin-Beck , Osteoartritis , ARN Circular , ARN Largo no Codificante , ARN Mensajero , Transcriptoma , Humanos , Enfermedad de Kashin-Beck/genética , ARN Largo no Codificante/genética , Masculino , Femenino , Persona de Mediana Edad , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Osteoartritis/genética , Perfilación de la Expresión Génica/métodos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Anciano , Articulación de la Rodilla/patología , Articulación de la Rodilla/metabolismo , MicroARNs/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Biología Computacional/métodos , Condrocitos/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Adulto
10.
Orthop Surg ; 16(6): 1300-1307, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644516

RESUMEN

OBJECTIVE: Despite the established success of total knee arthroplasty (TKA) with end-stage osteoarthritis, there is a notable scarcity of research on its long-term outcomes in individuals suffering from end-stage Kashin-Beck disease (KBD). This retrospective study aimed to assess the long-term outcomes and effectiveness of clinical function, quality of life, and complications of TKA and end-stage KBD patients in Tibetan highland areas. METHODS: The retrospective cohort included 43 KBD patients, comprising a total of 59 knees, who had undergone TKA at West China Hospital, Sichuan University between 2008 and 2021. Patients were subsequently followed up for a minimum of 3 years, and received rigorous radiological and clinical assessments at 3, 6, and 12 months post surgery, followed by annual examinations thereafter. The evaluation included various efficacy indices, including visual analogue scale (VAS) scores, hospital for special surgery (HSS) scores, functional score for adult Tibetans with Kashin-Beck disease (FSAT-KBD), and radiographic findings. Comparison of indicators within the same group was conducted using one-way repeated-measures analysis of variance or paired sample t-tests, whereas between-group differences were compared using an independent t-test. RESULTS: Throughout the average follow-up duration of 10.8 years, patients experienced a substantial reduction in knee pain and noteworthy functional improvement. The VAS scores decreased significantly from 77.47 ± 4.12 mm before surgery to 10.91 ± 1.97 mm after surgery, indicating considerable alleviation of knee pain. The HSS scores improved markedly, increasing from 44.26 ± 4.95 preoperatively to 91.26 ± 4.37, indicating enhanced joint function. Similarly, the FSAT-KBD exhibited positive progression, increasing from 25.90 ± 3.12 to 36.95 ± 3.54. Importantly, at the last follow-up, none of the patients presented with periprosthetic infection, prosthesis loosening, or periprosthetic fracture. CONCLUSION: At long-term follow-up, compared with patients in the preoperative period, patients in Tibetan highland areas with KBD of the knee who underwent TKA benefited from a significant reduction in pain, improvement in joint function, and satisfactory improvement in quality of life.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Enfermedad de Kashin-Beck , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de Kashin-Beck/cirugía , Estudios de Seguimiento , Tibet , Anciano , Calidad de Vida , Dimensión del Dolor , Adulto , Osteoartritis de la Rodilla/cirugía , China
11.
Int Orthop ; 48(8): 2145-2151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679689

RESUMEN

PURPOSE: We retrospectively evaluated the characteristics of these patients and the effectiveness of ankle arthrodesis in the treatment of ankle arthritis caused by Kashin-Beck disease (KBD). METHODS: A retrospective study of KBD patients with ankle osteoarthritis who underwent ankle arthrodesis between December 2012 and January 2022 was performed. A total of 46 patients were included. The general characteristics, clinical manifestations and imaging features of the patients were recorded and summarized. measured using the VAS score, and ankle function was assessed by the AOFAS ankle-hindfoot score. RESULTS: Multiple subchondral cystic changes were found in 42(91.3%) patients. The VAS scores for both resting and weight-bearing conditions were 6.28 ± 1.30 vs. 2.09 ± 1.12 (P < .001) and 6.87 ± 1.01 vs. 2.17 ± 0.98 (P < .001), respectively. The AOFAS scores were 59.17 ± 5.50 and 88.39 ± 1.42, respectively (P < .001). CONCLUSIONS: The subchondral multiple cystic transformation of the ankle KBD has a certain suggestive role.Arthrodesis is an effective method to reduce ankle pain and improve ankle function in KBD patients with ankle osteoarthritis.


Asunto(s)
Articulación del Tobillo , Artrodesis , Enfermedad de Kashin-Beck , Osteoartritis , Humanos , Artrodesis/métodos , Masculino , Osteoartritis/cirugía , Femenino , Estudios Retrospectivos , Articulación del Tobillo/cirugía , Articulación del Tobillo/diagnóstico por imagen , Persona de Mediana Edad , Enfermedad de Kashin-Beck/cirugía , Enfermedad de Kashin-Beck/diagnóstico , Resultado del Tratamiento , Adulto , Anciano
12.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37326932

RESUMEN

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , Ratas , Animales , Condrocitos/metabolismo , Selenio/metabolismo , Toxina T-2/toxicidad , Cartílago Articular/metabolismo , Articulación de la Rodilla/metabolismo , Enfermedad de Kashin-Beck/metabolismo
13.
Biofactors ; 50(4): 725-737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38156801

RESUMEN

Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.


Asunto(s)
Condrocitos , Exosomas , Enfermedad de Kashin-Beck , MicroARNs , Análisis de Expresión Génica de una Sola Célula , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Condrocitos/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Enfermedad de Kashin-Beck/sangre , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , MicroARNs/genética , MicroARNs/sangre , RNA-Seq , Análisis de Expresión Génica de una Sola Célula/métodos
14.
Hum Exp Toxicol ; 42: 9603271231219480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059300

RESUMEN

This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 µM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 µM BGJ398. 1 µM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Osteoartritis , Toxina T-2 , Ratas , Animales , Toxina T-2/toxicidad , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/farmacología , Osteoartritis/metabolismo , Enfermedad de Kashin-Beck/inducido químicamente
15.
Wei Sheng Yan Jiu ; 52(6): 943-949, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38115659

RESUMEN

OBJECTIVE: To investigate and compare the dietary structure between healthy people and patients in KBD area of Chamdo-Lhorong of Tibet. METHODS: A case-control study design was used, retrospectively select patients who had completed screening and registered in the national Kashin-Beck Disease surveillance system in 2021 in Luolong County, Qamdo, Tibet as the source population of the case group, and randomly selected people who had not been screened for Kashin-Beck disease in the same county as the control group. The self-made diet questionnaire was used to record the types of food consumption, frequency of food intake, basic information of the respondents, family size and other basic information in the past year by one-on-one interview. RESULTS: The staple food with the highest response among the patients(97.33%) was rice(rice/rice noodle), and the highest response among the healthy people(90%) was non-wheat products, non-fried pasta(bread/steamed bun/noodles/dumplings), except instant noodles.78.7% of patients chose not to eat local wheat(Tibetan noodles), and the number of non-patients who chose to eat non-local wheat(Tibetan noodles) 3-4 times a week was significantly higher than that of patients. The meat and meat products with the highest response in both patients(93.33%) and healthy people(90%) was yak meat(local). The control group also chose to consume beef(non-local/lamb/mutton/other non-processed meat), poultry and livestock offal, fish(all seawater and freshwater fish), shrimp and crabs or other seafood, and their consumption rate and intake frequency were significantly higher than those of the case group. The consumption rate and frequency of tomato, onion and garlic(garlic shoots/leek/onion/onion) and fresh eggs(egg/duck egg/quail egg/goose egg) in control group were significantly higher than those in case group. There was no significant difference in consumption rate and frequency of fruits, milk and dairy products between the two groups. CONCLUSION: In addition to the local highland barley(zanba), most people also chose to purchase rice and flour, which changed the situation of single staple food in the past. However, compared with the healthy population in the disease area, the consumption rate and intake frequency of fish, shrimp and crabs, poultry and livestock viscera, eggs(fresh eggs) and vegetables(tomatoes, scallions, ginger and garlic) in KBD patients were significantly lower, the selection of meat varieties is single, mainly local yak meat, and the overall dietary structure still presents the risk of single type and unbalanced diet.


Asunto(s)
Dieta , Enfermedad de Kashin-Beck , Humanos , Estudios de Casos y Controles , Leche , Cebollas , Estudios Retrospectivos , Tibet , Verduras
16.
Nutrients ; 15(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960304

RESUMEN

Background: Kashin-Beck disease (KBD) is a distinct osteoarthropathy in China with an unclear pathogenesis. This study aims to explore whether perturbations in the intestine metabolome could be linked to KBD individuals. Methods: An investigation was conducted in KBD endemic villages and fecal samples were collected. After applying inclusion and exclusion criteria, a total of 75 subjects were enrolled for this study, including 46 KBD (including 19 Grade I KBD and 27 Grade II KBD) and 29 controls. Untargeted metabolomics analysis was performed on the platform of UHPLC-MS. PLS-DA and OPLS-DA were conducted to compare the groups and identify the differential metabolites (DMs). Pathway analysis was conducted on MPaLA platform to explore the functional implication of the DMs. Results: Metabolomics analysis showed that compared with the control group, KBD individuals have a total of 584 differential metabolites with dysregulated levels such as adrenic acid (log2FC = -1.87, VIP = 4.84, p = 7.63 × 10-7), hydrogen phosphate (log2FC = -2.57, VIP = 1.27, p = 1.02 × 10-3), taurochenodeoxycholic acid (VIP = 1.16, log2FC = -3.24, p = 0.03), prostaglandin E3 (VIP = 1.17, log2FC = 2.67, p = 5.61 × 10-4), etc. Pathway analysis revealed several significantly perturbed pathways associated with KBD such as selenium micronutrient network (Q value = 3.11 × 10-3, Wikipathways), metabolism of lipids (Q value = 8.43 × 10-4, Reactome), free fatty acid receptors (Q value = 3.99 × 10-3, Reactome), and recycling of bile acids and salts (Q value = 2.98 × 10-3, Reactome). Subgroup comparisons found a total of 267 differential metabolites were shared by KBD vs. control, KBD II vs. control, and KBD I vs. control, while little difference was found between KBD II and KBD I (only one differential metabolite detected). Conclusions: KBD individuals showed distinct metabolic features characterized by perturbations in lipid metabolism and selenium-related bioprocesses. Our findings suggest that the loss of nutrients metabolism balance in intestine was involved in KBD pathogenesis. Linking the nutrients metabolism (especially selenium and lipid) to KBD cartilage damage should be a future direction of KBD study.


Asunto(s)
Enfermedad de Kashin-Beck , Selenio , Oligoelementos , Humanos , Enfermedad de Kashin-Beck/epidemiología , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Selenio/metabolismo , China/epidemiología , Metabolómica , Oligoelementos/análisis
17.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003226

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN: KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS: The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS: Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Toxina T-2 , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Toxina T-2/metabolismo , Línea Celular , Vía de Señalización Wnt , Autofagia , Condrocitos/metabolismo , Cartílago Articular/metabolismo
18.
Nutrients ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836473

RESUMEN

Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.


Asunto(s)
Enfermedad de Kashin-Beck , Selenio , Oligoelementos , Humanos , Alimentos Fortificados , Antioxidantes , Enfermedad de Kashin-Beck/metabolismo
19.
Toxins (Basel) ; 15(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37755959

RESUMEN

Kashin-Beck disease (KBD) is a multifactorial endemic disease that only occurs in specific Asian areas. Mycotoxin contamination, especially from the Fusarium spp., has been considered as one of the environmental risk factors that could provoke chondrocyte and cartilage damage. This study aimed to investigate whether new mycotoxins could be identified in KBD-endemic regions as a potential KBD risk factor. This was investigated on 292 barley samples collected in Tibet during 2009-2016 and 19 wheat samples collected in Inner Mongolia in 2006, as control, from KBD-endemic and non-endemic areas. The LC-HRMS(/MS) data, obtained by a general mycotoxin extraction technic, were interpreted by both untargeted metabolomics and molecular networks, allowing us to identify a discriminating compound, enniatin B, a mycotoxin produced by some Fusarium spp. The presence of Fusarium spp. DNA was detected in KBD-endemic area barley samples. Further studies are required to investigate the role of this mycotoxin in KBD development in vivo.


Asunto(s)
Fusarium , Hordeum , Enfermedad de Kashin-Beck , Micotoxinas , Grano Comestible , Enfermedad de Kashin-Beck/epidemiología , China/epidemiología
20.
Toxins (Basel) ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624253

RESUMEN

T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-ß signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , MicroARNs , Toxina T-2 , Ratas , Animales , Toxina T-2/toxicidad , Selenometionina/farmacología , Cloruro de Tolonio , Ratas Sprague-Dawley , Enfermedad de Kashin-Beck/genética , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA