Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Mol Genet Genomic Med ; 12(10): e70007, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39436788

RESUMEN

BACKGROUND: POLIII-related leukodystrophies are a group of recently recognized hereditary white matter diseases with a similar clinical and radiological phenotype. No Tunisian studies have been published about POLIII-related leukodystrophy due to POLR3A variants. The aim of this study was to contribute to the clinical, radiological, and genetic characterization of POLR3A-related leukodystrophy in a Tunisian cohort. METHODS: We report six cases of genetically confirmed POLR3A-related leukodystrophy belonging to six unrelated Tunisian families, along with a review of previously published pediatric cases. RESULTS: All patients were born to consanguineous marriages and originated from the North or the Center of Tunisia. Age at onset varied between 15 months and 6 years. The clinical phenotype was similar in all patients with cerebellar ataxia, tremor, and nystagmus being the key features. Brain imaging showed diffuse hypomyelination in all patients with progressive cerebellar atrophy in three patients. Molecular analysis identified the same bi-allelic NM_007055.4:c.2011T>C; p.(Trp671Arg) variant in the POLR3A gene in all patients. CONCLUSION: We hypothesize a founder effect for the identified variant given its recurrence in six unrelated individuals with a similar clinical phenotype. Given the apparent genetic homogeneity of Tunisian POLR3A patients, the recurrent variant should be directly targeted. This should facilitate diagnosis in index patients, and genetic counseling.


Asunto(s)
Linaje , Fenotipo , ARN Polimerasa III , Humanos , Masculino , Femenino , ARN Polimerasa III/genética , Preescolar , Niño , Túnez , Lactante , Temblor/genética , Temblor/patología , Mutación , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Ataxia/genética , Ataxia/patología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología
2.
Int J Mol Sci ; 25(20)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39456768

RESUMEN

Deleterious variations in STXBP1 are responsible for early infantile epileptic encephalopathy type 4 (EIEE4, OMIM # 612164) because of its dysfunction in the central nervous system. The clinical spectrum of the neurodevelopmental delays associated with STXBP1 aberrations is collectively defined as STXBP1 encephalopathy (STXBP1-E), the conspicuous features of which are highlighted by early-onset epileptic seizures without structural brain anomalies. A girl was first diagnosed with unexplained disorders of movement and cognition, which later developed into STXBP1-E with unexpected leukoaraiosis and late onset of seizures. Genetic screening and molecular tests alongside neurological examinations were employed to investigate the genetic etiology and establish the diagnosis. A heterozygous mutation of c.37+2dupT at the STXBP1 splice site was identified as the pathogenic cause in the affected girl. The de novo mutation (DNM) did not result in any truncated proteins but immediately triggered mRNA degradation by nonsense-mediated mRNA decay (NMD), which led to the haploinsufficiency of STXBP1. The patient showed atypical phenotypes characterized by hypomyelinating leukodystrophy, and late onset of epileptic seizures, which had never previously been delineated in STXBP1-E. These findings strongly indicated that the haploinsufficiency of STXBP1 could also exhibit divergent clinical phenotypes because of the genetic heterogeneity in the subset of encephalopathies.


Asunto(s)
Proteínas Munc18 , Mutación , Empalme del ARN , Espasmos Infantiles , Humanos , Proteínas Munc18/genética , Femenino , Espasmos Infantiles/genética , Empalme del ARN/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Lactante , Preescolar , Haploinsuficiencia/genética , Fenotipo
3.
Handb Clin Neurol ; 204: 197-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39322379

RESUMEN

Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.


Asunto(s)
Leucoencefalopatías , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/patología , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Proteína Proteolipídica de la Mielina/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Vaina de Mielina/patología , Vaina de Mielina/genética
4.
Ann Neurol ; 96(5): 855-870, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39078102

RESUMEN

OBJECTIVE: We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. BACKGROUND: Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. METHODS: High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. RESULTS: We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. INTERPRETATION: Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024;96:855-870.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Lamina Tipo B , Humanos , Masculino , Adulto , Lamina Tipo B/genética , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Persona de Mediana Edad , Enfermedad de Pelizaeus-Merzbacher/genética , Variación Estructural del Genoma/genética
5.
J Hum Genet ; 69(11): 607-611, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38951194

RESUMEN

Heterozygous transmembrane protein 63A (TMEM63A) variants cause transient infantile hypomyelinating leukodystrophy-19, which features remarkable natural resolution of clinical and imaging findings during childhood. Previous reports have mainly described de novo variants lacking detailed familial cases. Herein, we describe the clinical course of familial cases with a TMEM63A variant. A 5-month-old girl presented with nystagmus, global hypotonia, and difficulty swallowing since birth. Brain magnetic resonance imaging at 1.5 and 5 months revealed diffuse hypomyelination. Her mother, maternal aunt, and grandfather had nystagmus and motor developmental delays in infancy, which resolved spontaneously during childhood. Compared with these cases, the proband's motor developmental delay was profound, and she was the only one with feeding difficulties, necessitating nasogastric tube feeding. Genetic testing revealed a heterozygous TMEM63A variant (NM_014698.3:c.1658G>A, p.(Gly553Asp)) in the proband and her family. This is the first three-generation familial report of a TMEM63A variant that provides insight into its history and heterogeneity.


Asunto(s)
Heterocigoto , Proteínas de la Membrana , Linaje , Adulto , Femenino , Humanos , Lactante , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Imagen por Resonancia Magnética , Proteínas de la Membrana/genética , Mutación/genética , Nistagmo Patológico/genética , Nistagmo Patológico/diagnóstico , Pronóstico
6.
Am J Med Genet A ; 194(11): e63790, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38922739

RESUMEN

A 7-month-old boy presented to our clinic with developmental delay, Magnetic Resonance Imaging (MRI) features of delayed myelination and diffusion restriction, and a homozygous variant of uncertain significance (c.4T>G, p.Phe2Val) in HIKESHI, a gene associated with autosomal-recessive hypomyelinating leukodystrophy 13. We hypothesized that the variant is disease-causing and aimed to rescue the cellular phenotype with vector-mediated gene replacement. HIKESHI mediates heat-induced nuclear accumulation of heat-shock proteins, including HSP70, to protect cells from stress. We generated skin fibroblasts from the proband and proband's mother (heterozygous) to compare protein expression and subcellular localization of HSP70 under heat stress conditions, and the effect of vector-mediated overexpression of HIKESHI in the proband's cells under the same heat stress conditions. Western blot analysis revealed absent HIKESHI protein from proband fibroblasts, contrasted with ample expression in parental cells. Under heat stress conditions, while the mother's cells displayed appropriate nuclear localization of HSP70, the proband's cells displayed impaired nuclear translocalization. When patient fibroblasts were provided exogenous HIKESHI, the transfected proband's cells showed restored heat-induced nuclear translocalization of HSP70 under conditions of heat stress. These functional data establish that the patient's variant is a pathogenic loss-of-function mutation, thus confirming a diagnosis of hypomyelinating leukodystrophy 13 and that vector-mediated gene replacement may be an effective treatment approach for patients with this disorder.


Asunto(s)
Fibroblastos , Terapia Genética , Proteínas HSP70 de Choque Térmico , Mutación Missense , Fenotipo , Humanos , Masculino , Mutación Missense/genética , Lactante , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Imagen por Resonancia Magnética , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/terapia , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Proteínas Portadoras
8.
Stem Cell Res ; 78: 103468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852424

RESUMEN

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism. Here, we report the generation of a human induced pluripotent stem cell (hiPSC) line from fibroblasts of the first identified carrier of the biallelic POLR3A variants c.1802 T > A and c.4072G > A.


Asunto(s)
Células Madre Pluripotentes Inducidas , ARN Polimerasa III , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Línea Celular , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Masculino , Alelos
10.
Genes (Basel) ; 15(5)2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790154

RESUMEN

Infantile onset transient hypomyelination (IOTH) is a rare form of leukodystrophy that is associated with transient motor impairment and delayed central nervous system myelination. Here, we report a case of a new mutation in the transmembrane protein 63A (TMEM63A) gene identified using Whole-Exome Sequencing (WES) in an 8.5-year-old boy with clinical symptoms similar to IOTH. The patient exhibited a mild developmental delay, including hypotonia and delayed motor milestones, as well as some notable phenotypic characteristics, such as macrocephaly and macrosomia. Despite the absence of early neuroimaging, genetic testing revealed a paternally inherited variant in TMEM63A (NM_14698.3:c.220A>T;p:(Arg74*)), potentially linked to infantile transient hypomyelinating leukodystrophy type 19. Our findings in this study and the patient's favorable clinical course underscore the potential for successful myelination even with delayed initiation and may contribute to a better understanding of the genotype-phenotype correlation in IOTH, emphasizing the importance of genetic analysis in unresolved developmental delay cases and providing critical insights for accurate diagnosis, prognosis and potential therapeutic strategies in rare leukodystrophies.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Proteínas de la Membrana , Niño , Humanos , Masculino , Codón sin Sentido/genética , Secuenciación del Exoma , Estudios de Asociación Genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Heterocigoto , Proteínas de la Membrana/genética
11.
Nat Commun ; 15(1): 4284, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769304

RESUMEN

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.


Asunto(s)
Adenosina , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Homocigoto , Metiltransferasas , Mutación Missense , ARN Mensajero , Femenino , Humanos , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas del Tejido Nervioso , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
Am J Med Genet A ; 194(9): e63645, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38709052

RESUMEN

Proline-5-carboxylate reductase 2, encoded by PYCR2 gene, is an enzyme that catalyzes the last step of proline synthesis from pyrroline-5-carboxylate synthetase to proline. PYCR2 gene defect causes hypomyelinating leukodystrophy 10. Up until now, to our knowledge around 38 patients with PYCR2 defect have been reported. Herein, we describe clinical, neuroradiological, biochemical findings, and metabolomic profiling of three new genetically related cases of PYCR2 defects from a large family. Cerebrospinal fluid (CSF) amino acid levels were measured and untargeted metabolomic profiling of plasma and CSF were conducted and evaluated together with the clinical findings in the patients. While plasma and CSF proline levels were found to be totally normal, untargeted metabolomic profiling revealed mild increases of glutamate, alpha-ketoglutarate, and l-glutamate semialdehyde and marked increases of inosine and xanthine. Our findings and all the previous reports suggest that proline auxotrophy is not the central disease mechanism. Untargeted metabolomics point to mild changes in proline pathway and also in purine/pyrimidine pathway.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Metabolómica , Prolina , Pirrolina Carboxilato Reductasas , Niño , Femenino , Humanos , Masculino , delta-1-Pirrolina-5-Carboxilato Reductasa , Ácido Glutámico/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/sangre , Imagen por Resonancia Magnética , Redes y Vías Metabólicas/genética , Metaboloma/genética , Metabolómica/métodos , Mutación/genética , Linaje , Prolina/líquido cefalorraquídeo , Purinas/metabolismo , Pirimidinas , Pirrolina Carboxilato Reductasas/genética , Pirrolina Carboxilato Reductasas/deficiencia , Xantina/sangre , Lactante
13.
Sci Rep ; 14(1): 7638, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561452

RESUMEN

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Masculino , Femenino , Humanos , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Mutación , Fenotipo , Atrofia , ARN de Transferencia , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo
15.
Mol Genet Genomic Med ; 12(2): e2394, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38337154

RESUMEN

BACKGROUND: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare, inherited disorder that causes epilepsy, intellectual disorders, and early onset macrocephaly. MLC1 has been identified as a main pathogenic gene. METHODS: Clinical data such as magnetic resonance imaging (MRI), routine blood tests, and physical examinations were collected from proband. Trio whole-exome sequencing (WES) of the family was performed, and all variants with a minor allele frequency (<0.01) in the exon and canonical splicing sites were selected for further pathogenic evaluation. Candidate variants were validated using Sanger sequencing. RESULTS: Here, we report a new homozygous variant identified in two children from the same family in the MLC1 gene [NM_015166.4: c.838_843delinsATTTTA, (p.Ser280_Phe281delinsIleLeu)]. This variant is classified as variant of uncertain significance (VUS) according to the ACMG guidelines. Further experiments demonstrate that the newly identified variant causes a decrease of MLC1 protein levels when expressed in a heterologous expression system. CONCLUSION: Our case expands on this genetic variation and provides new evidence for the clinical diagnosis of MLC1-related MLC.


Asunto(s)
Quistes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Megalencefalia , Niño , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética
16.
Neurogenetics ; 25(2): 85-91, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280046

RESUMEN

Disease-causing variants in HEPACAM are associated with megalencephalic leukoencephalopathy with subcortical cysts 2A (MLC2A, MIM# 613,925, autosomal recessive), and megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without impaired intellectual development (MLC2B, MIM# 613,926, autosomal dominant). These disorders are characterised by macrocephaly, seizures, motor delay, cognitive impairment, ataxia, and spasticity. Brain magnetic resonance imaging (MRI) in these individuals shows swollen cerebral hemispheric white matter and subcortical cysts, mainly in the frontal and temporal regions. To date, 45 individuals from 39 families are reported with biallelic and heterozygous variants in HEPACAM, causing MLC2A and MLC2B, respectively. A 9-year-old male presented with developmental delay, gait abnormalities, seizures, macrocephaly, dysarthria, spasticity, and hyperreflexia. MRI revealed subcortical cysts with diffuse cerebral white matter involvement. Whole-exome sequencing (WES) in the proband did not reveal any clinically relevant single nucleotide variants. However, copy number variation analysis from the WES data of the proband revealed a copy number of 4 for exons 3 and 4 of HEPACAM. Validation and segregation were done by quantitative PCR which confirmed the homozygous duplication of these exons in the proband and carrier status in both parents. To the best of our knowledge, this is the first report of an intragenic duplication in HEPACAM causing MLC2A.


Asunto(s)
Proteínas de Ciclo Celular , Quistes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Niño , Humanos , Masculino , Proteínas de Ciclo Celular/genética , Quistes/genética , Quistes/diagnóstico por imagen , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma , Duplicación de Gen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Homocigoto , Imagen por Resonancia Magnética , Linaje
17.
J Neurol ; 271(1): 593-605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37755460

RESUMEN

Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Enfermedades por Almacenamiento Lisosomal , Sustancia Blanca , Humanos , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/terapia , Imagen por Resonancia Magnética
19.
Brain ; 146(12): 5070-5085, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37635302

RESUMEN

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Asunto(s)
Anodoncia , Anomalías Craneofaciales , Enfermedades Desmielinizantes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Mutación/genética
20.
Eur J Paediatr Neurol ; 45: 29-35, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267771

RESUMEN

BACKGROUND: Leukodystrophies are monogenic disorders primarily affecting the white matter. We aimed to evaluate the utility of genetic testing and time-to-diagnosis in a retrospective cohort of children with suspected leukodystrophy. METHODS: Medical records of patients who attended the leukodystrophy clinic at the Dana-Dwek Children's Hospital between June 2019 and December 2021 were retrieved. Clinical, molecular, and neuroimaging data were reviewed, and the diagnostic yield was compared across genetic tests. RESULTS: Sixty-seven patients (Female/Male ratio 35/32) were included. Median age at symptom onset was 9 months (interquartile range (IQR) 3-18 months), and median length of follow-up was 4.75 years (IQR 3-8.5). Time from symptom onset to a confirmed genetic diagnosis was 15months (IQR 11-30). Pathogenic variants were identified in 60/67 (89.6%) patients; classic leukodystrophy (55/67, 82.1%), leukodystrophy mimics (5/67, 7.5%). Seven patients (10.4%) remained undiagnosed. Exome sequencing showed the highest diagnostic yield (34/41, 82.9%), followed by single-gene sequencing (13/24, 54%), targeted panels (3/9, 33.3%) and chromosomal microarray (2/25, 8%). Familial pathogenic variant testing confirmed the diagnosis in 7/7 patients. A comparison between patients who presented before (n = 31) and after (n = 21) next-generation sequencing (NGS) became clinically available in Israel revealed that the time-to-diagnosis was shorter in the latter group with a median of 12months (IQR 3.5-18.5) vs. a median of 19 months (IQR 13-51) (p = 0.005). CONCLUSIONS: NGS carries the highest diagnostic yield in children with suspected leukodystrophy. Access to advanced sequencing technologies accelerates speed to diagnosis, which is increasingly crucial as targeted treatments become available.


Asunto(s)
Pruebas Genéticas , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Preescolar , Femenino , Humanos , Lactante , Masculino , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios Retrospectivos , Sustancia Blanca/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/fisiopatología , Niño , Adolescente , Judíos/genética , Imagen por Resonancia Magnética , Efecto Fundador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA