Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38722791

RESUMEN

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Animales , Humanos , Astrocitos/metabolismo , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Microglía/inmunología , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/inmunología
2.
J Neuroimmunol ; 391: 578367, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735091

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) presents a significant clinical challenge, associated with increased mortality and healthcare expenses. Hyperbaric oxygen therapy (HBOT), involving inhaling pure or highly concentrated oxygen under pressures exceeding one atmosphere, has demonstrated neuroprotective effects in various conditions. However, the precise mechanisms underlying its protective actions against sepsis-associated brain injury remain unclear. This study aimed to determine whether HBOT protects against SAE and to elucidate the impact of the hypoxia-inducible factor-1α (HIF-1α) signaling pathway on SAE. METHODS: The experiment consisted of two parts. In the first part, C57BL/6 J male mice were divided into five groups using a random number table method: control group, sham surgery group, sepsis group, HBOT + sepsis group, and HBOT + sham surgery group. In the subsequent part, C57BL/6 J male mice were divided into four groups: sepsis group, HBOT + sepsis group, HIF-1α + HBOT + sepsis group, and HIF-1α + sepsis group. Sepsis was induced via cecal ligation and puncture (CLP). Hyperbaric oxygen therapy was administered at 1 h and 4 h post-CLP. After 24 h, blood and hippocampal tissue were collected for cytokine measurements. HIF-1α, TNF-α, IL-1ß, and IL-6 expression were assessed via ELISA and western blotting. Microglial expression was determined by immunofluorescence. Blood-brain barrier permeability was quantified using Evans Blue. Barnes maze and fear conditioning were conducted 14 days post-CLP to evaluate learning and memory. RESULTS: Our findings reveal that CLP-induced hippocampus-dependent cognitive deficits coincided with elevated HIF-1α and increased TNF-α, IL-1ß, and IL-6 levels in both blood and hippocampus. Observable activation of microglial cells in the hippocampus and increased blood-brain barrier (BBB) permeability were also evident. HBOT mitigated HIF-1α, TNF-α, IL-1ß, and IL-6 levels, attenuated microglial activation in the hippocampus, and significantly improved learning and memory deficits in CLP-exposed mice. Additionally, these outcomes were corroborated by injecting a lentivirus that overexpressed HIF-1α into the hippocampal region of the mice. CONCLUSION: HIF-1α escalation induced peripheral and central inflammatory factors, promoting microglial activation, BBB impairment, and cognitive dysfunction. However, HBOT ameliorated these effects by reducing HIF-1α levels in Sepsis-Associated Encephalopathy.


Asunto(s)
Modelos Animales de Enfermedad , Oxigenoterapia Hiperbárica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Encefalopatía Asociada a la Sepsis , Transducción de Señal , Animales , Oxigenoterapia Hiperbárica/métodos , Masculino , Ratones , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/terapia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal/fisiología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/terapia , Sepsis/complicaciones , Sepsis/terapia , Sepsis/metabolismo
3.
Ageing Res Rev ; 98: 102321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723752

RESUMEN

Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. In AD, the binding of Aß with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.


Asunto(s)
Terapia Genética , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Humanos , Terapia Genética/métodos , Terapia Genética/tendencias , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/terapia , Animales
4.
Pharmacol Biochem Behav ; 240: 173788, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734150

RESUMEN

Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.


Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Hipocampo , Plasticidad Neuronal , Efectos Tardíos de la Exposición Prenatal , Estimulación Magnética Transcraneal , Ácido Valproico , Animales , Ácido Valproico/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratas , Trastorno Autístico/terapia , Trastorno Autístico/inducido químicamente , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias/terapia , Conducta Animal/efectos de los fármacos
5.
Brain Stimul ; 17(3): 575-587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648972

RESUMEN

BACKGROUND: Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE: This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS: Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS: Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION: cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.


Asunto(s)
Enfermedades Desmielinizantes , Lisofosfatidilcolinas , Ratas Endogámicas Lew , Remielinización , Estimulación del Nervio Vago , Animales , Ratas , Remielinización/fisiología , Remielinización/efectos de los fármacos , Lisofosfatidilcolinas/toxicidad , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/inducido químicamente , Estimulación del Nervio Vago/métodos , Masculino , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/etiología , Modelos Animales de Enfermedad , Esclerosis Múltiple/terapia , Esclerosis Múltiple/inducido químicamente , Cuerpo Calloso
6.
Auton Neurosci ; 253: 103162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513382

RESUMEN

Vagus nerve stimulation (VNS) is under clinical investigation as a therapy for heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate its therapeutic effects on three main components of heart failure: cardiac function, cardiac remodeling and central neuroinflammation using a pressure overload (PO) rat model. Male Sprague-Dawley rats were divided into four groups: PO, PO + VNS, PO + VNS sham, and controls. All rats, except controls, underwent a PO surgery to constrict the thoracic aorta (~50 %) to induce HFrEF. Open loop VNS therapy was continuously administered to PO + VNS rats at 20 Hz, 1.0 mA for 60 days. Evaluation of cardiac function and structure via echocardiograms showed decreases in stroke volume and relative ejection fraction and increases in the internal diameter of the left ventricle during systole and diastole in PO rats (p < 0.05). However, these PO-induced adverse changes were alleviated with VNS therapy. Additionally, PO rats exhibited significant increases in myocyte cross sectional areas indicating hypertrophy, along with significant increases in myocardial fibrosis and apoptosis, all of which were reversed by VNS therapy (p < 0.05). Furthermore, VNS mitigated microglial activation in two central autonomic nuclei: the paraventricular nucleus of the hypothalamus and locus coeruleus. These findings demonstrate that when VNS therapy is initiated at an early stage of HFrEF progression (<10 % reduction in relative ejection fraction), the supplementation of vagal activity is effective in restoring multi organ homeostasis in a PO model.


Asunto(s)
Insuficiencia Cardíaca , Ratas Sprague-Dawley , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratas , Modelos Animales de Enfermedad , Volumen Sistólico/fisiología , Remodelación Ventricular/fisiología , Inflamación/terapia , Inflamación/fisiopatología , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/fisiopatología
7.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504517

RESUMEN

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E2 , Modelos Animales de Enfermedad , Terapia Genética , Ratones Transgénicos , Microglía , Placa Amiloide , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Ratones , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores
8.
Acupunct Med ; 42(3): 133-145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351622

RESUMEN

BACKGROUND: Oxidative stress and inflammatory responses play essential roles in cerebral ischemia/reperfusion (I/R) injury. Electroacupuncture (EA) is widely used as a rehabilitation method for stroke in China; however, the underlying mechanism of action remains unclear. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to impact anti-inflammatory and anti-oxidative effects. OBJECTIVE: This study investigated the role of PPAR-γ in EA-mediated effects and aimed to illuminate its possible mechanisms in cerebral I/R. METHODS: In this study, male Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were treated with EA at LI11 and ST36 for 30 min daily after MCAO/R for seven consecutive days. The neuroprotective effects of EA were measured by neurobehavioral evaluation, triphenyltetrazolium chloride staining, hematoxylin-eosin staining and transmission electron microscopy. Oxidative stress, inflammatory factors, neural apoptosis and microglial activation were examined by enzyme-linked immunosorbent assay, immunofluorescence and reverse transcriptase polymerase chain reaction. Western blotting was used to assess PPAR-γ-mediated signaling. RESULTS: We found that EA significantly alleviated cerebral I/R-induced infarct volume, decreased neurological scores and inhibited I/R-induced oxidative stress, inflammatory responses and microglial activation. EA also increased PPAR-γ protein expression. Furthermore, the protective effects of EA were reversed by injection of the PPAR-γ antagonist T0070907. CONCLUSION: EA attenuates cerebral I/R injury by regulating oxidative stress, neuronal death and neuroinflammation via stimulation of PPAR-γ.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Estrés Oxidativo , PPAR gamma , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Neuronas/metabolismo , Humanos , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Muerte Celular , Modelos Animales de Enfermedad
9.
Gene Ther ; 31(5-6): 234-241, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38135787

RESUMEN

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Asunto(s)
Cistatina B , Terapia Genética , Ratones Noqueados , Enfermedades Neuroinflamatorias , Animales , Ratones , Terapia Genética/métodos , Cistatina B/genética , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/genética , Humanos , Ataxia/genética , Ataxia/terapia , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/terapia , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación
11.
Nature ; 619(7970): 606-615, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438521

RESUMEN

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Neuronas Dopaminérgicas , Supervivencia de Injerto , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Linfocitos T Reguladores , Tirosina 3-Monooxigenasa , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neuronas Dopaminérgicas/inmunología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/trasplante , Mesencéfalo/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/terapia , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/cirugía , Enfermedad de Parkinson/terapia , Tirosina 3-Monooxigenasa/deficiencia , Tirosina 3-Monooxigenasa/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Animales , Ratones , Ratas , Oxidopamina/metabolismo , Supervivencia de Injerto/inmunología , Muerte Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Neostriado/metabolismo , Factores de Tiempo , Proliferación Celular , Resultado del Tratamiento
12.
Zhen Ci Yan Jiu ; 48(6): 557-63, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37385786

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture pretreatment on postoperative cognitive dysfunction (POCD), neuronal apoptosis and neuron-inflammation in aged rats. METHODS: Thirty-six male SD rats aged 20 months were randomly divided into sham operation group, model group and electroacupuncture (EA) group, with 12 rats in each group. The POCD rats model was prepared by internal fixation of left tibial fracture. Five days before modeling, EA stimulation (2 Hz/15 Hz, 1 mA, 30 min) was applied to "Zusanli" (ST36), "Hegu" (LI4) and "Neiguan" (PC6) on the unaffected side of rats in the EA group, once a day for consecutive 5 d. The learning and memory abilities of rats were evaluated by water maze test 31-35 days after operation. The apoptosis of hippocampal neurons was observed by Tunel/NeuN double staining. The expressions of high mobility group protein B1 (HMGB1) and phosphorylated (p)-nuclear factor (NF)-κB in microglia cells in hippocampal dentate gyrus were detected by immunofluorescence staining. The expression levels of interleukin (IL)-6 and IL-1ß in the hippocampus were detected by Western blot. RESULTS: Compared with the sham operation group, the escape latency was prolonged (P<0.05); the frequency of crossing the original platform, ratio of the swimming distance and the time in the target quadrant of the Morris water maze were significantly decreased (P<0.05); the apoptosis rate of hippocampal neurons was significantly increased (P<0.05); the expressions of HMGB1 and p-NF-κB in microglia cells in the dentate gyrus and the expression levels of IL-6 and IL-1ß in hippocampus were increased (P<0.05) in the model group. Compared with the model group, the results of the above indexes were all opposite (P<0.05) in the EA group. CONCLUSION: EA preconditioning can regulate hippocampal inflammatory response, alleviate neuronal apoptosis rate and long-term cognitive dysfunction in aged rats with POCD, the mechanisms may be related to the inhibition of microglia HMGB1/NF-κB pathway in hippocampal dentate gyrus.


Asunto(s)
Electroacupuntura , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias , Animales , Ratas , Complicaciones Cognitivas Postoperatorias/prevención & control , Complicaciones Cognitivas Postoperatorias/terapia , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/terapia , Proteína HMGB1/genética , Regulación de la Expresión Génica , FN-kappa B/genética , Interleucina-6/genética , Interleucina-1beta/genética
13.
Neurochem Int ; 162: 105463, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513311

RESUMEN

NLRP3 inflammasome activation is implicated in irradiation-induced cognitive dysfunction. Alternate-day fasting (ADF) has been demonstrated to improve neuroinflammation as a non-pharmacological intervention. However, the exact mechanism and the anti-inflammatory effect in irradiation-induced cognitive dysfunction still need further in-depth study. The present study examined the effects of eight-week ADF on the cognitive functions of mice as well as inflammasome-mediated hippocampal neuronal loss following irradiation in mouse models of irradiation-induced cognitive deficits using seven-week-old male C57BL/6J mice. The behavioral results of novel place recognition and object recognition tasks revealed that ADF ameliorated cognitive functions in irradiation-induced cognitive dysfunction mice. ADF inhibited the expression of components of the NLRP3 inflammasome (NLRP3, ASC, and Cl.caspase-1), the downstream inflammatory factor (IL-1ß and IL-18), and apoptosis-related proteins (caspase-3) via western blotting. Furthermore, an increased number of neurons and activated astrocytes were observed in the hippocampus using immunohistochemistry and Sholl analysis, which was jointly confirmed by western blotting. According to our study, this is the first time we found that ADF improved cognitive dysfunction induced by irradiation, and the anti-inflammatory effect of ADF could be due to inhibition in NLRP3-mediated hippocampal neuronal loss by suppressing astrocyte activation.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Ayuno Intermitente , Traumatismos por Radiación , Animales , Masculino , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipocampo/patología , Hipocampo/efectos de la radiación , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Traumatismos por Radiación/etiología , Traumatismos por Radiación/prevención & control , Enfermedades Neuroinflamatorias/terapia , Neuronas/patología , Neuronas/efectos de la radiación , Radioterapia/efectos adversos
15.
Biomater Adv ; 139: 212971, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882128

RESUMEN

Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like ß-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.


Asunto(s)
Axones , Colágeno , Criogeles , Grafito , Regeneración Nerviosa , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Axones/fisiología , Colágeno/uso terapéutico , Criogeles/uso terapéutico , Grafito/uso terapéutico , Enfermedades Neuroinflamatorias/fisiopatología , Enfermedades Neuroinflamatorias/terapia , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia
16.
Mol Nutr Food Res ; 66(18): e2200164, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35819092

RESUMEN

SCOPE: The gut microbiota plays a prominent role in gut-brain interactions and gut dysbiosis is involved in neuroinflammation. However, specific probiotics targeting neuroinflammation need to be explored. In this study, the antineuroinflammatory effect of the potential probiotic Roseburia hominis (R. hominis) and its underlying mechanisms is investigated. METHODS AND RESULTS: First, germ-free (GF) rats are orally treated with R. hominis. Microglial activation, proinflammatory cytokines, levels of short-chain fatty acids, depressive behaviors, and visceral sensitivity are assessed. Second, GF rats are treated with propionate or butyrate, and microglial activation, proinflammatory cytokines, histone deacetylase 1 (HDAC1), and histone H3 acetyl K9 (Ac-H3K9) are analyzed. The results show that R. hominis administration inhibits microglial activation, reduces the levels of IL-1α, INF-γ, and MCP-1 in the brain, and alleviates depressive behaviors and visceral hypersensitivity in GF rats. Moreover, the serum levels of propionate and butyrate are increased significantly in the R. hominis-treated group. Propionate or butyrate treatment reduces microglial activation, the levels of proinflammatory cytokines and HDAC1, and promotes the expression of Ac-H3K9 in the brain. CONCLUSION: These findings suggest that R. hominis alleviates neuroinflammation by producing propionate and butyrate, which serve as HDAC inhibitors. This study provides a potential psychoprobiotic to reduce neuroinflammation.


Asunto(s)
Eje Cerebro-Intestino , Butiratos , Clostridiales , Ácidos Grasos Volátiles , Histona Desacetilasa 1 , Enfermedades Neuroinflamatorias , Probióticos , Propionatos , Animales , Butiratos/sangre , Butiratos/metabolismo , Clostridiales/metabolismo , Citocinas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Vida Libre de Gérmenes , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Enfermedades Neuroinflamatorias/terapia , Probióticos/uso terapéutico , Propionatos/sangre , Propionatos/metabolismo , Ratas
17.
Lab Med ; 53(4): 426-432, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35311959

RESUMEN

OBJECTIVE: The absence of specific markers can make the diagnosis of neuroimmune disorders difficult, making other biomarkers such as thyroid peroxidase antibodies (TPO-Abs) more relevant. Laboratory tests are susceptible to interference, especially those tests performed using immunoassay techniques. The effect of treatment with human intravenous immunoglobulin (IVIG) on the results of TPO-Abs assays has not been previously characterized. MATERIALS AND METHODS: We analyzed TPO-Abs levels in 170 children monitored in the neuroimmune disease department of a tertiary hospital. We analyzed the characteristics of patients with increased TPO-Abs values and compared their progress with and without treatment. RESULTS: We found that 97% of patients with elevated TPO-Abs had received IVIG. After withdrawal from IVIG, a mean TPO-Abs decrease of 62.5% at 1 month was observed. The IVIG drug preparation was found to contain 1176 U/mL of TPO-Abs. An interferogram confirmed interference. CONCLUSION: It is advisable to measure levels of TPO-Abs before starting immunotherapy and remain vigilant regarding possible interference in the event of unsubstantiated elevations of this analyte.


Asunto(s)
Autoanticuerpos , Inmunoglobulinas Intravenosas , Yoduro Peroxidasa , Enfermedades Neuroinflamatorias , Autoanticuerpos/sangre , Biomarcadores/sangre , Niño , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Yoduro Peroxidasa/inmunología , Enfermedades Neuroinflamatorias/diagnóstico , Enfermedades Neuroinflamatorias/terapia
18.
Brain Res Bull ; 180: 46-58, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979238

RESUMEN

Progressive hippocampal neuronal losses, neuroinflammation, declined neurogenesis and impaired hippocampal functions are pathological features of Alzheimer's disease and temporal lobe epilepsy (TLE). Halting neuroinflammation and progressive neurodegeneration in the hippocampus is a major challenge in treating such disease conditions which, if unsuccessful would lead to learning/memory dysfunction and co-morbidities like anxiety/depression. Mesenchymal stem cells (MSCs) therapy provides hope for treating neurodegenerative diseases by either replacing lost neurons by transplantation of MSCs which might differentiate into appropriate neuronal phenotypes or by stimulating the resident neural stem cells for proliferation/differentiation. In this current study, we demonstrate that the intrahippocampal transplantation of ectoderm originated dental pulp stem cells (DPSCs) or intrahippocampal injection of DPSCs condition medium (DPSCs-CM) in a mouse model of hippocampal neurodegeneration could efficiently prevent neurodegeneration, neuroinflammation, enhance hippocampal neurogenesis and spatial learning and memory functions much superior to commonly used bone marrow mesenchymal stem cells (BM-MSCs) or its secretome. Probing the possible mechanisms of neuroprotection revealed that DPSCs/DPSCs-CM treatment upregulated an array of hosts' endogenous neural survival factors expression, reduced pro-apoptotic caspase activity and upregulated the anti-apoptotic factors BCL-2 and phosphorylated PI3K prominently than BM-MSCs/BM-MSCs-CM, suggesting that among MSCs, neural crest originated DPSCs might be a better adult stem cell candidate for treating neurodegenerative diseases.


Asunto(s)
Disfunción Cognitiva/terapia , Hipocampo/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Enfermedades Neurodegenerativas/terapia , Neurogénesis/fisiología , Enfermedades Neuroinflamatorias/terapia , Neuroprotección/fisiología , Animales , Apoptosis/fisiología , Disfunción Cognitiva/etiología , Medios de Cultivo Condicionados , Pulpa Dental/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neuroinflamatorias/etiología , Secretoma/fisiología
19.
Mol Neurobiol ; 59(1): 420-428, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34708330

RESUMEN

Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18, and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3, and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.


Asunto(s)
Envejecimiento/metabolismo , Supervivencia Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Terapia por Luz de Baja Intensidad , Enfermedades Neuroinflamatorias/terapia , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Ratas , Ratas Wistar
20.
Oxid Med Cell Longev ; 2021: 4280951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790287

RESUMEN

Decompressive craniectomy is an effective strategy to reduce intracranial hypertension after traumatic brain injury (TBI), but it is related to many postoperative complications, such as delayed intracranial hematoma and diffuse brain swelling. Our previous studies have demonstrated that controlled decompression (CDC) surgery attenuates brain injury and reduces the rate of complications after TBI. Here, we investigated the potential molecular mechanisms of CDC in experimental models. The in vitro experiments were performed in a traumatic neuronal injury (TNI) model following compression treatment in primary cultured cortical neurons. We found that compression aggravates TNI-induced neuronal injury, which was significantly attenuated by CDC for 2 h or 3 h. The results of immunocytochemistry showed that CDC reduced neuronal necroptosis and activation of RIP3 induced by TNI and compression, with no effect on RIP1 activity. These protective effects were associated with decreased levels of inflammatory cytokines and preserved intracellular Ca2+ homeostasis. In addition, the expression of the two-pore domain K+ channel TREK-1 and its activity was increased by compression and prolonged by CDC. Treatment with the TREK-1 blockers, spadin or SID1900, could partially prevent the effects of CDC on intracellular Ca2+ metabolism, necroptosis, and neuronal injury following TNI and compression. Using a traumatic intracranial hypertension model in rats, we found that CDC for 20 min or 30 min was effective in alleviating brain edema and locomotor impairment in vivo. CDC significantly inhibited neuronal necroptosis and neuroinflammation and increased TREK-1 activation, and the CDC-induced protection in vivo was attenuated by spadin and SID1900. In summary, CDC is effective in alleviating compressive neuronal injury both in vitro and in vivo, which is associated with the TREK-1-mediated attenuation of intracellular Ca2+ overload, neuronal necroptosis, and neuroinflammation.


Asunto(s)
Edema Encefálico/terapia , Lesiones Traumáticas del Encéfalo/complicaciones , Hemorragia Cerebral/terapia , Descompresión/métodos , Necroptosis , Enfermedades Neuroinflamatorias/terapia , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Hemorragia Cerebral/etiología , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA