Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.731
Filtrar
1.
Curr Genet ; 70(1): 15, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235627

RESUMEN

Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs. In this work we show that SWI/SNF subunits Swi1, Swi2, Snf5 and Snf6 can bind to activation domains of Ino2 required for expression of phospholipid biosynthetic genes in yeast. We identify an activator binding domain (ABD) of ATPase Swi2 and show that this ABD is functionally dispensable, presumably because ABDs of other SWI/SNF subunits can compensate for the loss. In contrast, mutational characterization of the ABD of the Swi2-related ATPase Sth1 revealed that some conserved basic and hydrophobic amino acids within this domain are essential for the function of Sth1. While ABDs of Swi2 and Sth1 define separate functional protein domains, mapping of an ABD within ATPase Ino80 showed co-localization with its HSA domain also required for binding actin-related proteins. Comparative interaction studies finally demonstrated that several unrelated activators each exhibit a specific binding pattern with ABDs of Swi2, Sth1 and Ino80.


Asunto(s)
Adenosina Trifosfatasas , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Unión Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Activación Transcripcional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Dominios Proteicos , Proteínas Nucleares , Proteínas de Ciclo Celular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
2.
Nat Commun ; 15(1): 7807, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242590

RESUMEN

Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Endospermo , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Oryza , Oryza/genética , Endospermo/genética , Endospermo/metabolismo , Metilación de ADN/genética , Ensamble y Desensamble de Cromatina/genética , Plantas Modificadas Genéticamente , Elementos Transponibles de ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
4.
Nat Commun ; 15(1): 7425, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198446

RESUMEN

Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains one of the leading causes of cancer mortality in children. We performed Hi-C, ATAC-seq, and RNA-seq on 12 matched diagnosis/relapse pediatric leukemia specimens to uncover dynamic structural variants (SVs) and 3D chromatin rewiring that may contribute to relapse. While translocations are assumed to occur early in leukemogenesis and be maintained throughout progression, we discovered novel, dynamic translocations and confirmed several fusion transcripts, suggesting functional and therapeutic relevance. Genome-wide chromatin remodeling was observed at all organizational levels: A/B compartments, TAD interactivity, and chromatin loops, including some loci shared by 25% of patients. Shared changes were found to drive the expression of genes/pathways previously implicated in resistance as well as novel therapeutic candidates, two of which (ATXN1 and MN1) we functionally validated. Overall, these results demonstrate chromatin reorganization under the selective pressure of therapy and offer the potential for discovery of novel therapeutic interventions.


Asunto(s)
Cromatina , Evolución Clonal , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Cromatina/metabolismo , Cromatina/genética , Niño , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Evolución Clonal/genética , Ensamble y Desensamble de Cromatina/genética , Preescolar , Masculino , Translocación Genética , Femenino , Recurrencia , Adolescente
5.
Cell Genom ; 4(8): 100604, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38959898

RESUMEN

Insulinomas are rare neuroendocrine tumors arising from pancreatic ß cells, characterized by aberrant proliferation and altered insulin secretion, leading to glucose homeostasis failure. With the aim of uncovering the role of noncoding regulatory regions and their aberrations in the development of these tumors, we coupled epigenetic and transcriptome profiling with whole-genome sequencing. As a result, we unraveled somatic mutations associated with changes in regulatory functions. Critically, these regions impact insulin secretion, tumor development, and epigenetic modifying genes, including polycomb complex components. Chromatin remodeling is apparent in insulinoma-selective domains shared across patients, containing a specific set of regulatory sequences dominated by the SOX17 binding motif. Moreover, many of these regions are H3K27me3 repressed in ß cells, suggesting that tumoral transition involves derepression of polycomb-targeted domains. Our work provides a compendium of aberrant cis-regulatory elements affecting the function and fate of ß cells in their progression to insulinomas and a framework to identify coding and noncoding driver mutations.


Asunto(s)
Insulinoma , Humanos , Insulinoma/genética , Insulinoma/patología , Insulinoma/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Regulación Neoplásica de la Expresión Génica , Epigénesis Genética , Ensamble y Desensamble de Cromatina/genética
6.
Nat Rev Drug Discov ; 23(9): 661-681, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39014081

RESUMEN

Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.


Asunto(s)
Ensamble y Desensamble de Cromatina , Neoplasias , Humanos , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mutación , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Terapia Molecular Dirigida
7.
PLoS Genet ; 20(7): e1011345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985845

RESUMEN

The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Nucleosomas , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Animales , Caenorhabditis elegans/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Cromatina/metabolismo , Transcripción Genética , Regulación de la Expresión Génica/genética , Heterocromatina/genética , Heterocromatina/metabolismo , ARN de Interacción con Piwi
8.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38991729

RESUMEN

Embryonic germ cells develop rapidly to establish the foundation for future developmental trajectories, and in this process, they make critical lineage choices including the configuration of their unique identity and a decision on sex. Here, we use single-cell genomics patterns for the entire embryonic germline in Drosophila melanogaster along with the somatic gonadal precursors after embryonic gonad coalescence to investigate molecular mechanisms involved in the setting up and regulation of the germline program. Profiling of the early germline chromatin landscape revealed sex- and stage-specific features. In the male germline immediately after zygotic activation, the chromatin structure underwent a brief remodeling phase during which nucleosome density was lower and deconcentrated from promoter regions. These findings echoed enrichment analysis results of our genomics data in which top candidates were factors with the ability to mediate large-scale chromatin reorganization. Together, they point to the importance of chromatin regulation in the early germline and raise the possibility of a conserved epigenetic reprogramming-like process required for proper initiation of germline development.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Drosophila melanogaster , Desarrollo Embrionario , Animales , Masculino , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Cromatina/metabolismo , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinales Embrionarias/metabolismo , Células Germinales Embrionarias/citología , Células Germinativas/metabolismo , Epigénesis Genética , Femenino , Nucleosomas/metabolismo , Nucleosomas/genética , Análisis de la Célula Individual/métodos
9.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830772

RESUMEN

Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN , Regulación de la Expresión Génica , Nucleosomas , Transcripción Genética , Nucleosomas/metabolismo , Nucleosomas/genética , Humanos , Ensamble y Desensamble de Cromatina/genética , ADN/genética , ADN/metabolismo , Cromatina/metabolismo , Cromatina/genética , Genoma Humano , Secuencia de Bases
10.
Trends Genet ; 40(9): 739-746, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38910033

RESUMEN

The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.


Asunto(s)
Regulación de la Expresión Génica , Histonas , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno , Histonas/metabolismo , Histonas/genética , Procesamiento Proteico-Postraduccional/genética , Regulación de la Expresión Génica/genética , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Cromatina/metabolismo
11.
Nat Commun ; 15(1): 4770, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839769

RESUMEN

SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína SMARCB1 , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genética , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Ensamble y Desensamble de Cromatina/genética , Ratones Desnudos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Regiones Promotoras Genéticas/genética , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología
12.
Biochem Biophys Res Commun ; 724: 150223, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852505

RESUMEN

SWI/SNF chromatin remodeling complexes play a key role in gene transcription as epigenetic regulators and are typically considered to act as tumor suppressors in cancers. Compared to other cancer-related components of the SWI/SNF complex, research on SMARCC2, a component of the initial BAF core, has been relatively limited. This study aimed to elucidate the role of SMARCC2 in breast cancer by employing various in vitro and in vivo methods including cell proliferation assays, mammosphere formation, and xenograft models, complemented by RNA-seq, ATAC-seq, and ChIP analyses. The results showed that SMARCC2 silencing surprisingly led to the suppression of breast tumorigenesis, indicating a pro-tumorigenic function for SMARCC2 in breast cancer, which contrasts with the roles of other SWI/SNF subunits. In addition, SMARCC2 depletion reduces cancer stem cell features of breast cancer cells. Mechanistic study showed that SMARCC2 silencing downregulated the oncogenic Ras-PI3K signaling pathway, likely by directly regulating the chromatin accessibility of the enhancers of the key genes such as PIK3CB. Together, these results expand our understanding of the SWI/SNF complex's role in cancer development and identify SMARCC2 as a promising new target for breast cancer therapies.


Asunto(s)
Neoplasias de la Mama , Cromatina , Silenciador del Gen , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Cromatina/metabolismo , Cromatina/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular/genética , Carcinogénesis/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Transducción de Señal , Ratones Desnudos , Ensamble y Desensamble de Cromatina/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-38862431

RESUMEN

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Asunto(s)
Neoplasias , Precursores del ARN , ARN de Transferencia , Ribonucleasa P , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimología , Precursores del ARN/metabolismo , Precursores del ARN/genética , Inestabilidad Genómica , Animales , Daño del ADN , Procesamiento Postranscripcional del ARN , Ensamble y Desensamble de Cromatina/genética
14.
Adv Sci (Weinh) ; 11(32): e2401712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38900084

RESUMEN

Thyroid cancer is the most common type of endocrine cancer, and most patients have a good prognosis. However, the thyroid cancer differentiation status strongly affects patient response to conventional treatment and prognosis. Therefore, exploring the molecular mechanisms that influence the differentiation of thyroid cancer is very important for understanding the progression of this disease and improving therapeutic options. In this study, SETMAR as a key gene that affects thyroid cancer differentiation is identified. SETMAR significantly regulates the proliferation, epithelial-mesenchymal transformation (EMT), thyroid differentiation-related gene expression, radioactive iodine uptake, and sensitivity to MAPK inhibitor-based redifferentiation therapies of thyroid cancer cells. Mechanistically, SETMAR methylates dimethylated H3K36 in the SMARCA2 promoter region to promote SMARCA2 transcription. SMARCA2 can bind to enhancers of the thyroid differentiation transcription factors (TTFs) PAX8, and FOXE1 to promote their expression by enhancing chromatin accessibility. Moreover, METTL3-mediated m6A methylation of SETAMR mRNA is observed and showed that this medication can affect SETMAR expression in an IGF2BP3-dependent manner. Finally, the METTL3-14-WTAP activator effectively facilitates the redifferentiation of thyroid cancer cells via the SETMAR-SMARCA2-TTF axis utilized. The research provides novel insights into the molecular mechanisms underlying thyroid cancer dedifferentiation and provides a new approach for therapeutically promoting redifferentiation.


Asunto(s)
Diferenciación Celular , Ensamble y Desensamble de Cromatina , Neoplasias de la Tiroides , Factores de Transcripción , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Humanos , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ratones , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad
15.
J Mol Biol ; 436(17): 168655, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878855

RESUMEN

Nucleosome dynamics plays important roles in many biological processes, such as DNA replication and gene expression. NucMap (https://ngdc.cncb.ac.cn/nucmap) is the first database of genome-wide nucleosome positioning maps across species. Here, we present an updated version, NucMap 2.0, by incorporating more species and MNase-seq samples. In addition, we integrate other related omics data for each MNase-seq sample to provide a comprehensive view of nucleosome positioning, such as gene expression, transcription factor binding sites, histone modifications and DNA methylation. In particular, NucMap 2.0 integrates and pre-analyzes RNA-seq data and ChIP-seq data of human-related samples, which facilitates the interpretation of nucleosome positioning in humans. All processed data are integrated into an in-built genome browser, and users can make comprehensive side-by-side analyses. In addition, more online analytical functions are developed, which allows researchers to identify differential nucleosome regions and explore potential gene regulatory regions. All resources are open access with a user-friendly web interface.


Asunto(s)
Bases de Datos Genéticas , Nucleosomas , Nucleosomas/genética , Nucleosomas/metabolismo , Humanos , Animales , Programas Informáticos , Ensamble y Desensamble de Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Metilación de ADN , Código de Histonas/genética
17.
Curr Opin Genet Dev ; 86: 102201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701672

RESUMEN

Polycomb-associated chromatin and pericentromeric heterochromatin form genomic domains important for the epigenetic regulation of gene expression. Both Polycomb complexes and heterochromatin factors rely on 'read and write' mechanisms, which, on their own, are not sufficient to explain the formation and the maintenance of these epigenetic domains. Microscopy has revealed that they form specific nuclear compartments separated from the rest of the genome. Recently, some subunits of these molecular machineries have been shown to undergo phase separation, both in vitro and in vivo, suggesting that phase separation might play important roles in the formation and the function of these two kinds of repressive chromatin. In this review, we will present the recent advances in the field of facultative and constitutive heterochromatin formation and maintenance through phase separation.


Asunto(s)
Cromatina , Epigénesis Genética , Heterocromatina , Proteínas del Grupo Polycomb , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Separación de Fases
18.
Artículo en Inglés | MEDLINE | ID: mdl-38761362

RESUMEN

Epigenetic changes have been established to be a hallmark of aging, which implies that aging science requires collaborating with the field of chromatin biology. DNA methylation patterns, changes in relative abundance of histone post-translational modifications, and chromatin remodeling are the central players in modifying chromatin structure. Aging is commonly associated with an overall increase in chromatin instability, loss of homeostasis, and decondensation. However, numerous publications have highlighted that the link between aging and chromatin changes is not nearly as linear as previously expected. This complex interplay of these epigenetic elements during the lifetime of an organism likely contributes to cellular senescence, genomic instability, and disease susceptibility. Yet, the causal links between these phenomena still need to be fully unraveled. In this perspective article, we discuss potential future directions of aging chromatin biology.


Asunto(s)
Envejecimiento , Cromatina , Epigénesis Genética , Neoplasias , Humanos , Envejecimiento/genética , Envejecimiento/fisiología , Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Senescencia Celular/genética , Senescencia Celular/fisiología , Inestabilidad Genómica/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN , Histonas/metabolismo , Animales , Procesamiento Proteico-Postraduccional
19.
Genes (Basel) ; 15(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790189

RESUMEN

BACKGROUND: Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS: The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS: Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS: The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Papillomavirus Humano 16 , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteínas Oncogénicas Virales , Proteínas E7 de Papillomavirus , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
20.
Curr Opin Genet Dev ; 86: 102193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626581

RESUMEN

The human genome is not just a simple string of DNA, it is a complex and dynamic entity intricately folded within the cell's nucleus. This three-dimensional organization of chromatin, the combination of DNA and proteins in the nucleus, is crucial for many biological processes and has been prominently studied for its intricate relationship to gene expression. Indeed, the transcriptional machinery does not operate in isolation but interacts intimately with the folded chromatin structure. Techniques for chromatin conformation capture, including genome-wide sequencing approaches, have revealed key organizational features of chromatin, such as the formation of loops by CCCTC-binding factor (CTCF) and the division of loci into chromatin compartments. While much of the recent research and reviews have focused on CTCF loops, we discuss several new revelations that have emerged concerning chromatin compartments, with a particular focus on what is known about mechanistic drivers of compartmentalization. These insights challenge the traditional views of chromatin organization and reveal the complexity behind the formation and maintenance of chromatin compartments.


Asunto(s)
Factor de Unión a CCCTC , Cromatina , Humanos , Cromatina/genética , Cromatina/metabolismo , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Genoma Humano/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/genética , ADN/metabolismo , Ensamble y Desensamble de Cromatina/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA