Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.828
Filtrar
1.
Nat Commun ; 15(1): 4363, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778087

RESUMEN

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Asunto(s)
Neoplasias de la Mama , Microfluídica , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto , Medicina de Precisión/métodos , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Microfluídica/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
2.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722288

RESUMEN

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Asunto(s)
Neoplasias de la Mama , Organoides , Medicina de Precisión , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Organoides/efectos de los fármacos , Organoides/patología , Organoides/metabolismo , Medicina de Precisión/métodos , Animales , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Persona de Mediana Edad
3.
Nat Commun ; 15(1): 3599, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678014

RESUMEN

Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.


Asunto(s)
Neoplasias de la Mama , Microscopía Fluorescente , Esferoides Celulares , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microscopía Fluorescente/métodos , Femenino , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología
4.
Int J Cancer ; 155(2): 324-338, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533706

RESUMEN

Breast cancer has become the most commonly diagnosed cancer. The intra- and interpatient heterogeneity induced a considerable variation in treatment efficacy. There is an urgent requirement for preclinical models to anticipate the effectiveness of individualized drug responses. Patient-derived organoids (PDOs) can accurately recapitulate the architecture and biological characteristics of the origin tumor, making them a promising model that can overtake many limitations of cell lines and PDXs. However, it is still unclear whether PDOs-based drug testing can benefit breast cancer patients, particularly those with tumor recurrence or treatment resistance. Fresh tumor samples were surgically resected for organoid culture. Primary tumor samples and PDOs were subsequently subjected to H&E staining, immunohistochemical (IHC) analysis, and whole-exome sequencing (WES) to make comparisons. Drug sensitivity tests were performed to evaluate the feasibility of this model for predicting patient drug response in clinical practice. We established 75 patient-derived breast cancer organoid models. The results of H&E staining, IHC, and WES revealed that PDOs inherited the histologic and genetic characteristics of their parental tumor tissues. The PDOs successfully predicted the patient's drug response, and most cases exhibited consistency between PDOs' drug susceptibility test results and the clinical response of the matched patient. We conclude that the breast cancer organoids platform can be a potential preclinical tool used for the selection of effective drugs and guided personalized therapies for patients with advanced breast cancer.


Asunto(s)
Neoplasias de la Mama , Secuenciación del Exoma , Organoides , Medicina de Precisión , Humanos , Organoides/patología , Organoides/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Medicina de Precisión/métodos , Persona de Mediana Edad , Adulto , Anciano , Ensayos de Selección de Medicamentos Antitumorales/métodos
5.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456804

RESUMEN

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Exp Hematol ; 133: 104212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552942

RESUMEN

Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.


Asunto(s)
Leucemia , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Leucemia/patología , Leucemia/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Animales , Médula Ósea/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Células del Estroma/patología , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Técnicas de Cocultivo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología
7.
SLAS Discov ; 29(3): 100141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218316

RESUMEN

High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the in-vitro conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Melanoma , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos , Evaluación Preclínica de Medicamentos/métodos
8.
Adv Exp Med Biol ; 1410: 115-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36289161

RESUMEN

Drug resistance in leukaemia is a major problem that needs to be addressed. Precision medicine provides an avenue to reduce drug resistance through a personalised treatment plan. It has helped to better stratify patients based on their molecular profile and therefore improved the sensitivity of patients to a given therapeutic regimen. However, therapeutic options are still limited for patients who have already been subjected to many lines of chemotherapy. The process of designing and developing new drugs requires significant resources, including money and time. Drug repurposing has been explored as an alternative to identify effective drug(s) that could be used to target leukaemia and lessen the burden of drug resistance. The drug repurposing process usually includes preclinical studies with drug screening and clinical trials before approval. Although most of the repurposed drugs that have been identified are generally safe for leukaemia treatment, they seem not to be good candidates for monotherapy but could have value in combination with other drugs, especially for patients who have exhausted therapeutic options. In this review, we highlight precision medicine in leukaemia and the role of drug repurposing. Specifically, we discuss the several screening methods via chemoinformatic, in vitro, and ex vivo that have facilitated and accelerated the drug repurposing process.


Asunto(s)
Reposicionamiento de Medicamentos , Leucemia , Medicina de Precisión , Humanos , Reposicionamiento de Medicamentos/métodos , Medicina de Precisión/métodos , Leucemia/terapia , Ensayos de Selección de Medicamentos Antitumorales/métodos
9.
Sci Rep ; 12(1): 2886, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190616

RESUMEN

In our search for novel small molecules activating procaspase-3, we have designed and synthesized two series of novel (E)-N'-arylidene-2-(2-oxoindolin-1-yl)acetohydrazides (4) and (Z)-2-(5-substituted-2-oxoindolin-1-yl)-N'-(2-oxoindolin-3-ylidene)acetohydrazides (5). Cytotoxic evaluation revealed that the compounds showed notable cytotoxicity toward three human cancer cell lines: colon cancer SW620, prostate cancer PC-3, and lung cancer NCI-H23. Especially, six compounds, including 4f-h and 4n-p, exhibited cytotoxicity equal or superior to positive control PAC-1, the first procaspase-3 activating compound. The most potent compound 4o was three- to five-fold more cytotoxic than PAC-1 in three cancer cell lines tested. Analysis of compounds effects on cell cycle and apoptosis demonstrated that the representative compounds 4f, 4h, 4n, 4o and 4p (especially 4o) accumulated U937 cells in S phase and substantially induced late cellular apoptosis. The results show that compound 4o would serve as a template for further design and development of novel anticancer agents.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Activadores de Enzimas , Hidrazinas/síntesis química , Hidrazinas/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Neoplasias Pulmonares/patología , Masculino , Neoplasias de la Próstata/patología
10.
Life Sci ; 295: 120380, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143825

RESUMEN

AIMS: the main purpose of this study was to identify new selective antitumor agents. MAIN METHODS: several hydrazonoyl chlorides (HCs) were synthesized and human tumor cell line viability was determined using the MTT assay. Tumor development was assessed using Ehrlich ascites carcinoma (EAC)-bearing mice. KEY FINDINGS: our results showed that 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride (compound 4; CPD 4) and 2-oxo-2-(phenylamino)-N-(p-tolyl)acetohydrazonoyl chloride (CPD 5) were the most cytotoxic HCs to human cervical tumor HeLa (IC50: 20 and 25 µM for CPD 4 and 5 respectively), breast MCF7 (IC50: 29 and 34 µM for CPD 4 and 5 respectively) and colon HCT116 cancer cells (IC50: 26 and 25 µM for CPD 4 and 5 respectively) with the least cytotoxicity to human non-tumor CCD-18Co colon fibroblasts as well as murine splenocytes. The active compounds significantly inhibited colony formation as well as tumor development in EAC-bearing mice. We also observed that PTEN-deficient cells displayed greater sensitivity than cells expressing wild type PTEN. At the molecular level, comet and cell cycle analyses indicated that the active compounds generate DNA damage. In light of the PTEN-dependent sensitivity and genomic instability we examined the influence of HCs on the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) and the PI3K/AKT/mTOR pathway, which are each known to be synthetic lethal with PTEN. We found that both PNKP and the PI3K/AKT/mTOR pathway to be adversely affected by the HCs, which may partially account for their toxicity. SIGNIFICANCE: hydrazonoyl chlorides can be considered as hit compounds for the development of new antitumor agents.


Asunto(s)
Antineoplásicos/síntesis química , Hidrazonas/síntesis química , Hidrazonas/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Enzimas Reparadoras del ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Humanos , Hidrazonas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
11.
Sci Rep ; 12(1): 2319, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149728

RESUMEN

RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Metástasis de la Neoplasia/prevención & control , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales/métodos , Genes Reporteros , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Oleo Sci ; 71(2): 267-276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35110468

RESUMEN

In this study, it is recorded the inhibition effect of Thalassiolin B on aldose reductase, alpha-glucosidase and alpha-amylase enzymes. In the next step, the molecular docking method was used to compare the biological activities of the Thalassiolin B molecule against enzymes formed from the assembly of proteins. In these calculations, the enzymes used are Aldose reductase, Alpha-Amylase, and Alpha-Glucosidase, respectively. After the docking method, ADME/T analysis of Thalassiolin B molecule was performed to be used as a drug in the pharmaceutical industry. In the MTT assay, the anti-human colon cancer properties of Thalassiolin B against EB, LS1034, and SW480 cell lines were investigated. The cell viability of Thalassiolin B was very low against human colon cancer cell lines without any cytotoxicity on the human normal (HUVEC) cell line. The IC50 of the Thalassiolin B against EB, LS1034, and SW480 were 483, 252, and 236 µg/mL, respectively. Thereby, the best cytotoxicity results and anti-human colon cancer potentials of our Thalassiolin B were observed in the case of the SW480 cell line. Maybe the anti-human colon cancer properties of Thalassiolin B are related to their antioxidant effects.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Antineoplásicos Fitogénicos , Antioxidantes , Productos Biológicos/farmacología , Neoplasias del Colon/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Flavonoides/farmacología , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular/métodos , alfa-Amilasas/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana , Humanos , alfa-Glucosidasas
13.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054773

RESUMEN

Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines-Fadu and Cal27-cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.


Asunto(s)
Quimioradioterapia , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Terapia de Protones , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos
14.
Adv Drug Deliv Rev ; 182: 114111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031388

RESUMEN

Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.


Asunto(s)
Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Sistema Inmunológico/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/fisiopatología , Ingeniería de Tejidos/métodos , Factores de Edad , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Técnicas de Cultivo Tridimensional de Células , Liberación de Fármacos , Modelos Biológicos , Factores Sexuales
15.
Sci Rep ; 12(1): 1488, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087119

RESUMEN

Gastric cancer (GC) is the third cause of cancer-related mortality worldwide and is often diagnosed at advanced stages of the disease. This makes the development of more comprehensive models and efficient treatments crucial. One option is based on repurposing already marketed drugs as adjuvants to chemotherapy. Accordingly, we have previously developed the combination of docetaxel and the cholesterol-lowering drug, lovastatin, as a powerful trigger of HGT-1 human GC cells' apoptosis using 2D cultures. Because 3D models, known as spheroids, are getting recognized as possibly better suited than 2Ds in toxicological research, we aimed to investigate the efficacy of this drug combination with such a model. We established monocellular spheroids from two human (GC) cell lines, HGT-1 and AGS, and bicellular spheroids from these cells mixed with cancer-associated fibroblasts. With these, we surveyed drug-induced cytotoxicity with MTT assays. In addition, we used the Incucyte live imaging and analysis system to follow spheroid growth and apoptosis. Taken together, our results showed that the lovastatin + docetaxel combination was an efficient strategy to eliminate GC cells grown in 2D or 3D cultures, lending further support in favor of repurposing lovastatin as an adjuvant to taxane-based anticancer treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Microscopía Intravital/métodos , Esferoides Celulares/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Fibroblastos Asociados al Cáncer , Técnicas de Cultivo Tridimensional de Células , Línea Celular Tumoral , Docetaxel/farmacología , Docetaxel/uso terapéutico , Reposicionamiento de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Lovastatina/farmacología , Lovastatina/uso terapéutico , Neoplasias Gástricas/patología
16.
Clin Transl Med ; 12(1): e678, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35075805

RESUMEN

BACKGROUND: Gallbladder carcinoma (GBC) is a relatively rare but highly aggressive cancer with late clinical detection and a poor prognosis. However, the lack of models with features consistent with human gallbladder tumours has hindered progress in pathogenic mechanisms and therapies. METHODS: We established organoid lines derived from human GBC as well as normal gallbladder and benign gallbladder adenoma (GBA) tissues. The histopathology signatures of organoid cultures were identified by H&E staining, immunohistochemistry and immunofluorescence. The genetic and transcriptional features of organoids were analysed by whole-exome sequencing and RNA sequencing. A set of compounds targeting the most active signalling pathways in GBCs were screened for their ability to suppress GBC organoids. The antitumour effects of candidate compounds, CUDC-101 and CUDC-907, were evaluated in vitro and in vivo. RESULTS: The established organoids were cultured stably for more than 6 months and closely recapitulated the histopathology, genetic and transcriptional features, and intratumour heterogeneity of the primary tissues at the single-cell level. Notably, expression profiling analysis of the organoids revealed a set of genes that varied across the three subtypes and thus may participate in the malignant progression of gallbladder diseases. More importantly, we found that the dual PI3K/HDAC inhibitor CUDC-907 significantly restrained the growth of various GBC organoids with minimal toxicity to normal gallbladder organoids. CONCLUSIONS: Patient-derived organoids are potentially a useful platform to explore molecular pathogenesis of gallbladder tumours and discover personalized drugs.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias de la Vesícula Biliar/diagnóstico , Modelos Biológicos , Organoides/patología , Adulto , Anciano , Anciano de 80 o más Años , Ensayos de Selección de Medicamentos Antitumorales/estadística & datos numéricos , Detección Precoz del Cáncer/instrumentación , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/estadística & datos numéricos , Femenino , Neoplasias de la Vesícula Biliar/terapia , Humanos , Masculino , Persona de Mediana Edad , Medicina de Precisión/instrumentación , Medicina de Precisión/métodos , Medicina de Precisión/estadística & datos numéricos , Secuenciación del Exoma/métodos , Secuenciación del Exoma/estadística & datos numéricos
17.
Cell Mol Life Sci ; 79(1): 34, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989869

RESUMEN

New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


Asunto(s)
Catepsina B/antagonistas & inhibidores , Catepsinas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Carga Tumoral/efectos de los fármacos , Animales , Catepsina B/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores Enzimáticos/química , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones Transgénicos , Invasividad Neoplásica , Infiltración Neutrófila/efectos de los fármacos
18.
Theranostics ; 12(2): 474-492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976196

RESUMEN

When several life-prolonging drugs are indicated for cancer treatment, predictive drug-response tumor biomarkers are essential to guide management. Most conventional biomarkers are based on bulk tissue analysis, which cannot address the complexity of single-cell heterogeneity responsible for drug resistance. Therefore, there is a need to develop alternative drug response predictive biomarker approaches that could directly interrogate single-cell and whole population cancer cell drug sensitivity. In this study, we report a novel method exploiting bioluminescence microscopy to detect single prostate cancer (PCa) cell response to androgen receptor (AR)-axis-targeted therapies (ARAT) and predict cell population sensitivity. Methods: We have generated a new adenovirus-delivered biosensor, PCA3-Cre-PSEBC-ITSTA, which combines an integrated two-step transcriptional amplification system (ITSTA) and the activities of the prostate cancer antigen 3 (PCA3) and modified prostate-specific antigen (PSEBC) gene promoters as a single output driving the firefly luciferase reporter gene. This system was tested on PCa cell lines and on primary PCa cells. Single cells, exposed or not to ARAT, were dynamically imaged by bioluminescence microscopy. A linear discriminant analysis (LDA)-based method was used to determine cell population sensitivities to ARAT. Results: We show that the PCA3-Cre-PSEBC-ITSTA biosensor is PCa-specific and can dynamically monitor single-cell AR transcriptional activity before and after ARAT by bioluminescence microscopy. After biosensor transduction and bioluminescence microscopy single-cell luminescence dynamic quantification, LDA analysis could discriminate the cell populations overall ARAT sensitivity despite heterogeneous single-cell responses. Indeed, the biosensor could detect a significant decrease in AR activity following exposure to conventional ARAT in hormone-naive primary PCa cells, while in castration-resistant PCa patients, treatment response correlated with the observed clinical ARAT resistance. Conclusion: The exploitation of bioluminescence microscopy and multi-promoter transcriptionally-regulated biosensors can aptly define the overall treatment response of patients by monitoring live single cell drug response from primary cancer tissue. This approach can be used to develop predictive biomarkers for drug response in order to help clinicians select the best drug combinations or sequences for each patient.


Asunto(s)
Técnicas Biosensibles/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Microscopía/métodos , Transcripción Genética , Animales , Antígenos de Neoplasias/genética , Línea Celular , Calicreínas/genética , Luminiscencia , Ratones , Regiones Promotoras Genéticas , Antígeno Prostático Específico/genética , Transcripción Genética/efectos de los fármacos
19.
Anticancer Drugs ; 33(1): 6-10, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261912

RESUMEN

Anticancer drug discovery programmes use a large number of in-vitro assays to screen the potency of compound libraries. The accuracy and reliability of these in-vitro assays are vital in selecting potent lead candidates for further (pre)clinical studies. Among the commonly used cell viability assays, the sulforhodamine B (SRB) assay has been a popular choice due to its simplicity, accuracy, reliability and reproducibility. SRB dye interacts with protein's basic amino acids and viable cell number is determined based on the cellular protein content. In this study, the cytotoxic potency of the novel hydroxythiopyridone derivatives towards A549 and H522 cells was determined using the SRB assay. The known drugs oxaliplatin and vorinostat were also examined. The resulting EC50 values were accurate, reliable and reproducible. However, all EC50 values calculated in 6-well plates were higher compared to those determined from 96-well plates. Furthermore, results from 6-well plates were also more variable compared to 96-well plates. Our results confirm that SRB assay is a reliable technique in screening the potency of anticancer drug candidates but plating conditions need to be carefully considered.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Rodaminas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Oxaliplatino/farmacología , Reproducibilidad de los Resultados , Vorinostat/farmacología
20.
Hum Cell ; 35(1): 23-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34761350

RESUMEN

The tumor microenvironment contributes significantly to tumor initiation, progression, and resistance to chemotherapy. Much of our understanding of the tumor and its microenvironment is developed using various methods of cell culture. Throughout the last two decades, research has increasingly shown that 3D cell culture systems can remarkably recapitulate the complexity of tumor architecture and physiology compared to traditional 2D models. Unlike the flat culture system, these novel models enabled more cell-cell and cell-extracellular matrix interactions. By mimicking in vivo microenvironment, 3D culture systems promise to become accurate tools ready to be used in diagnosis, drug screening, and personalized medicine. In this review, we discussed the importance of 3D culture in simulating the tumor microenvironment and focused on the effects of cancer cell-microenvironment interactions on cancer behavior, resistance, proliferation, and metastasis. Finally, we assessed the role of 3D cell culture systems in the contexts of drug screening. 2D culture system is used to study cancer cell growth, progression, behavior, and drug response. It provides contact between cells and supports paracrine crosstalk between host cells and cancer cells. However, this system fails to simulate the architecture and the physiological aspects of in vivo tumor microenvironment due to the absence of cell-cell/ cell-ECM interactions as well as unlimited access to O2 and nutrients, and the absence of tumor heterogeneity. Recently advanced research has led researchers to generate 3D culture system that can better recapitulate the in vivo environment by providing hypoxic medium, facilitating cell-cell and cell-ECM, interactions, and recapitulating heterogeneity of the tumor. Several approaches are used to maintain and expand cancer cells in 3D culture systems such as tumor spheroids (cell aggregate that mimics the in vivo growth of tumor cells), scaffold-based approaches, bioreactors, microfluidic derives, and organoids. 3D systems are currently used for disease modeling and pre-clinical drug testing.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Neoplasias/patología , Microambiente Tumoral , Antineoplásicos/farmacología , Comunicación Celular , Proliferación Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Matriz Extracelular , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA