Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.207
Filtrar
1.
Virol J ; 21(1): 187, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148126

RESUMEN

Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.


Asunto(s)
Enterovirus Humano A , Predisposición Genética a la Enfermedad , Enfermedad de Boca, Mano y Pie , Glicoproteínas de Membrana , Repeticiones de Minisatélite , Humanos , Enfermedad de Boca, Mano y Pie/genética , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/virología , Glicoproteínas de Membrana/genética , Enterovirus Humano A/inmunología , Enterovirus Humano A/genética , Masculino , Femenino , Lactante , Repeticiones de Minisatélite/genética , Preescolar , Polimorfismo de Nucleótido Simple , Genotipo , Niño
2.
JMIR Public Health Surveill ; 10: e59604, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39087568

RESUMEN

Background: Hand, foot, and mouth disease (HFMD) is a global public health concern, notably within the Asia-Pacific region. Recently, the primary pathogen causing HFMD outbreaks across numerous countries, including China, is coxsackievirus (CV) A6, one of the most prevalent enteroviruses in the world. It is a new variant that has undergone genetic recombination and evolution, which might not only induce modifications in the clinical manifestations of HFMD but also heighten its pathogenicity because of nucleotide mutation accumulation. Objective: The study assessed the epidemiological characteristics of HFMD in China and characterized the molecular epidemiology of the major pathogen (CV-A6) causing HFMD. We attempted to establish the association between disease progression and viral genetic evolution through a molecular epidemiological study. Methods: Surveillance data from the Chinese Center for Disease Control and Prevention from 2021 to 2023 were used to analyze the epidemiological seasons and peaks of HFMD in Henan, China, and capture the results of HFMD pathogen typing. We analyzed the evolutionary characteristics of all full-length CV-A6 sequences in the NCBI database and the isolated sequences in Henan. To characterize the molecular evolution of CV-A6, time-scaled tree and historical population dynamics regarding CV-A6 sequences were estimated. Additionally, we analyzed the isolated strains for mutated or missing amino acid sites compared to the prototype CV-A6 strain. Results: The 2021-2023 epidemic seasons for HFMD in Henan usually lasted from June to August, with peaks around June and July. The monthly case reporting rate during the peak period ranged from 20.7% (4854/23,440) to 35% (12,135/34,706) of the total annual number of cases. Analysis of the pathogen composition of 2850 laboratory-confirmed cases identified 8 enterovirus serotypes, among which CV-A6 accounted for the highest proportion (652/2850, 22.88%). CV-A6 emerged as the major pathogen for HFMD in 2022 (203/732, 27.73%) and 2023 (262/708, 37.01%). We analyzed all CV-A6 full-length sequences in the NCBI database and the evolutionary features of viruses isolated in Henan. In China, the D3 subtype gradually appeared from 2011, and by 2019, all CV-A6 virus strains belonged to the D3 subtype. The VP1 sequences analyzed in Henan showed that its subtypes were consistent with the national subtypes. Furthermore, we analyzed the molecular evolutionary features of CV-A6 using Bayesian phylogeny and found that the most recent common ancestor of CV-A6 D3 dates back to 2006 in China, earlier than the 2011 HFMD outbreak. Moreover, the strains isolated in 2023 had mutations at several amino acid sites compared to the original strain. Conclusions: The CV-A6 virus may have been introduced and circulating covertly within China prior to the large-scale HFMD outbreak. Our laboratory testing data confirmed the fluctuation and periodic patterns of CV-A6 prevalence. Our study provides valuable insights into understanding the evolutionary dynamics of CV-A6.


Asunto(s)
Evolución Molecular , Enfermedad de Boca, Mano y Pie , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/virología , China/epidemiología , Humanos , Epidemiología Molecular , Enterovirus Humano A/genética , Enterovirus Humano A/aislamiento & purificación , Enterovirus Humano A/clasificación , Filogenia , Enterovirus/genética , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Genómica , Masculino
3.
Eur J Med Chem ; 276: 116658, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39088999

RESUMEN

The enterovirus is a genus of single-stranded, highly diverse positive-sense RNA viruses, including Human Enterovirus A-D and Human Rhinovirus A-C species. They are responsible for numerous diseases and some infections can progress to life-threatening complications, particularly in children or immunocompromised patients. To date, there is no treatment against enteroviruses on the market, except for polioviruses (vaccine) and EV-A71 (vaccine in China). Following a decrease in enterovirus infections during and shortly after the (SARS-Cov2) lockdown, enterovirus outbreaks were once again detected, notably in young children. This reemergence highlights on the need to develop broad-spectrum treatment against enteroviruses. Over the last year, our research team has identified a new class of small-molecule inhibitors showing anti-EV activity. Targeting the well-known hydrophobic pocket in the viral capsid, these compounds show micromolar activity against EV-A71 and a high selectivity index (SI) (5h: EC50, MRC-5 = 0.57 µM, CC50, MRC-5 >20 µM, SI > 35; EC50, RD = 4.38 µM, CC50, RD > 40 µM, SI > 9; 6c: EC50, MRC-5 = 0.29 µM, CC50, MRC-5 >20 µM, SI > 69; EC50, RD = 1.66 µM, CC50, RD > 40 µM, SI > 24; Reference: Vapendavir EC50, MRC-5 = 0.36 µM, CC50, MRC-5 > 20 µM, EC50, RD = 0.53 µM, CC50, RD > 40 µM, SI > 63). The binding mode of these compounds in complex with enterovirus capsids was analyzed and showed a series of conserved interactions. Consequently, 6c and its derivatives are promising candidates for the treatment of enterovirus infections.


Asunto(s)
Antivirales , Cápside , Enterovirus Humano A , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Enterovirus Humano A/efectos de los fármacos , Cápside/efectos de los fármacos , Cápside/metabolismo , Relación Estructura-Actividad , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga
4.
PLoS Negl Trop Dis ; 18(7): e0012008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949988

RESUMEN

BACKGROUND: Hand, foot, and mouth disease (HFMD) is a major public health issue in China while temperature and humidity are well-documented predictors. However, evidence on the combined effect of temperature and humidity is still limited. It also remains unclear whether such an effect could be modified by the enterovirus 71 (EV71) vaccination. METHODS: Based on 320,042 reported HFMD cases during the summer months between 2012 and 2019, we conducted a study utilizing Distributed Lag Non-Linear Models (DLNM) and time-varying DLNM to examine how China's HFMD EV71 vaccine strategy would affect the correlation between meteorological conditions and HFMD risk. RESULTS: The incidence of HFMD changed with the Discomfort Index in an arm-shaped form. The 14-day cumulative risk of HFMD exhibited a statistically significant increase during the period of 2017-2019 (following the implementation of the EV71 vaccine policy) compared to 2012-2016 (prior to the vaccine implementation). For the total population, the range of relative risk (RR) values for HFMD at the 75th, 90th, and 99th percentiles increased from 1.082-1.303 in 2012-2016 to 1.836-2.022 in 2017-2019. In the stratified analyses, Han Chinese areas show stronger relative growth, with RR values at the 75th, 90th, and 99th percentiles increased by 14.3%, 39.1%, and 134.4% post-vaccination, compared to increases of 22.7%, 41.6%, and 38.8% in minority areas. Similarly, boys showed greater increases (24.4%, 47.7%, 121.5%) compared to girls (8.1%, 28.1%, 58.3%). Additionally, the central Guizhou urban agglomeration displayed a tendency for stronger relative growth compared to other counties. CONCLUSIONS: Although the EV71 vaccine policy has been implemented, it hasn't effectively controlled the overall risk of HFMD. There's been a shift in the main viral subtypes, potentially altering population susceptibility and influencing HFMD occurrences. The modulating effects of vaccine intervention may also be influenced by factors such as race, sex, and economic level.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Vacunación , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , China/epidemiología , Masculino , Femenino , Vacunación/estadística & datos numéricos , Lactante , Preescolar , Enterovirus Humano A/inmunología , Incidencia , Vacunas Virales/administración & dosificación , Humedad , Temperatura , Niño
5.
Arch Virol ; 169(8): 169, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078431

RESUMEN

Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.


Asunto(s)
Antivirales , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Enterovirus Humano A , Itraconazol , Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/fisiología , Chlorocebus aethiops , Animales , Células Vero , Itraconazol/farmacología , Humanos , Niclosamida/farmacología , Enfermedad de Boca, Mano y Pie/virología , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico
6.
PLoS One ; 19(7): e0307776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39058724

RESUMEN

Deubiquitinating enzymes (DUBs) play a pivotal role in regulating the antiviral immune response by targeting members of the RLR signaling pathway. As a pivotal member of the RLR pathway, TRAF3 is essential for activating the MAVS/TBK-1/IRF3 signaling pathway in response to viral infection. Despite its importance, the function of DUBs in the TRAF3-mediated antiviral response is poorly understood. Ubiquitin-specific protease 26 (USP26) regulates the RLR signaling pathway to modulate the antiviral immune response. The results demonstrate that EV71 infection upregulates the expression of USP26. Knockdown of USP26 significantly enhances EV71-induced expression of IFN-ß and downstream interferon-stimulated genes (ISGs). Deficiency of USP26 not only inhibits EV71 replication but also weakens the host's resistance to EV71 infection. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. Conversely, knockdown of USP26 leads to an increase in the K63-linked polyubiquitination of TRAF3. These findings unequivocally establish the essential role of USP26 in RLR signaling and significantly contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.


Asunto(s)
Transducción de Señal , Factor 3 Asociado a Receptor de TNF , Ubiquitinación , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Humanos , Interferón Tipo I/metabolismo , Enterovirus Humano A/fisiología , Células HEK293 , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Interferón beta/metabolismo , Interferón beta/genética , Replicación Viral
7.
Front Immunol ; 15: 1407035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979420

RESUMEN

Introduction: The Hand, Foot and Mouth Disease (HFMD), caused by enterovirus 71 infection, is a global public health emergency. Severe HFMD poses a significant threat to the life and well-being of children. Numerous studies have indicated that the occurrence of severe HFMD is associated with cytokine storm. However, the precise molecular mechanism underlying cytokine storm development remains elusive, and there are currently no safe and effective treatments available for severe HFMD in children. Methods: In this study, we established a mouse model of severe HFMD to investigate the molecular mechanisms driving cytokine storm. We specifically analyzed metabolic disturbances, focusing on arginine/ornithine metabolism, and assessed the potential therapeutic effects of spermine, an ornithine metabolite. Results: Our results identified disturbances in arginine/ornithine metabolism as a pivotal factor driving cytokine storm onset in severe HFMD cases. Additionally, we discovered that spermine effectively mitigated the inflammatory injury phenotype observed in mice with severe HFMD. Discussion: In conclusion, our findings provide novel insights into the molecular mechanisms underlying severe HFMD from a metabolic perspective while offering a promising new strategy for its safe and effective treatment.


Asunto(s)
Arginina , Citocinas , Modelos Animales de Enfermedad , Enfermedad de Boca, Mano y Pie , Ornitina , Animales , Enfermedad de Boca, Mano y Pie/inmunología , Ratones , Arginina/metabolismo , Humanos , Citocinas/metabolismo , Espermina/metabolismo , Femenino , Enterovirus Humano A/inmunología , Masculino , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad
8.
J Med Virol ; 96(8): e29838, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081166

RESUMEN

Enteroviruses are important human pathogens with diverse serotypes, posing a major challenge to develop vaccines for individual serotypes, the success of polio vaccines in controlling and eradicating polio, along with the recent emergence and high prevalence of enterovirus-caused infectious diseases, highlights the importance of enterovirus vaccine development. Given our previous report on enteroviruses weakened by the 2 A S/T125A mutation, we assessed the potential of the EV-A71 2A-125A mutant as a vaccine candidate to address this challenge. We found that the 2A-125A mutant caused transient mild symptoms, low viral loads, and no significant pathological changes mild pathological changes in hSCARB2-KI mice, producing long-lasting cross-neutralizing antibodies against two EV-A71 wild strains. Pre-exposure to the 2A-125A mutant substantially protected against the EV-A71 Isehara wild-type strain, causing minor pathologies, significantly reducing muscle and lung inflammation, and preventing neurological damage, with reduced viral loads in vivo. Pre-exposure also distinctly suppressed the expression of pro-inflammatory cytokines, correlating to the severity of clinical symptoms. Collectively, the EV-A71 2A-125A mutant was attenuated and could generate a robust and protective immune response, suggesting its potential as a vaccine candidate and global solution for specific enterovirus vaccine development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enterovirus Humano A , Infecciones por Enterovirus , Vacunas Atenuadas , Carga Viral , Vacunas Virales , Animales , Enterovirus Humano A/inmunología , Enterovirus Humano A/genética , Infecciones por Enterovirus/prevención & control , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Humanos , Desarrollo de Vacunas , Femenino , Mutación , Citocinas
9.
Emerg Microbes Infect ; 13(1): 2382235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39017655

RESUMEN

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection. Single cell transcriptomics of a mixed neuronal population reveal higher viral RNA load in motor neurons, suggesting higher infectivity and replication of EV-A71 in motor neurons. The elevated RNA load in motor neurons correlates with the downregulation of ferritin-encoding genes. Subsequent analysis confirms that neurons infected with EV-A71 undergo ferroptosis, as evidenced by increased levels of labile Fe2+ and peroxidated lipids. Notably, the Fe2+ chelator Deferoxamine improves mitochondrial function and promotes survival of motor neurons by 40% after EV-A71 infection. These findings deepen understanding of the molecular pathogenesis of EV-A71 infection, providing insights which suggest that improving mitochondrial respiration and inhibition of ferroptosis can mitigate the impact of EV-A71 infection in the central nervous system.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Ferroptosis , Neuronas Motoras , Ferroptosis/efectos de los fármacos , Humanos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Enterovirus Humano A/efectos de los fármacos , Neuronas Motoras/virología , Neuronas Motoras/metabolismo , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Replicación Viral , Mitocondrias/metabolismo , Deferoxamina/farmacología , Carga Viral , Hierro/metabolismo , Ferritinas/metabolismo , Ferritinas/genética
10.
BMC Infect Dis ; 24(1): 750, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075371

RESUMEN

BACKGROUND: There is evidence suggesting that Notch1 signaling pathway contributes to the development of hand, foot, and mouth disease (HFMD); however, the role of Notch1 gene polymorphisms in the severity of coxsackievirus A6 (CVA6)-related HFMD remains unclear. This study aimed to investigate the correlation between Notch1 gene polymorphisms and the severity of CVA6-related HFMD. METHODS: A total of 196 patients (Chinese Han population) diagnosed with CVA6-related HFMD through nucleic acid testing were included in this study. Among them, 97 patients were classified as severe cases, while 99 cases were categorized as mild. The mRNA levels of Notch1 in the peripheral blood leukocytes of HFMD patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was utilized for genotyping of rs3124599, rs3124603, and rs3124591. RESULTS: The frequencies of rs3124599 alleles were G (39.0%) and A (61.0%), while the frequencies of rs3124599 genotypes were GG (12.2%), GA (53.6%), and AA (34.2%), respectively. In the recessive model, the frequency of rs3124599 AA genotypes significantly increased in severe patients, compared to mild patients (P < 0.05). Due to the low frequency of alleles for rs3124591 and rs3124603 in patients, as well as the absence of any difference in their distribution between the two groups (P > 0.05), no additional statistical analysis was performed. After adjusting for age and sex, patients with rs3124599 AA genotype had a significantly higher risk of severe HFMD in comparison to G allele carriers (GA/GG), with an odds ratio (95% confidence interval) of 2.010 (1.094, 3.691). Meanwhile, the mRNA levels of Notch1 were found to be significantly higher in severe patients compared to mild patients (P < 0.05), and a positive correlation was observed between Notch1 mRNA levels and the peripheral blood monocyte count (r = 0.42, P < 0.001). Additionally, there were significant differences observed in Notch1 mRNA levels and peripheral blood monocyte counts between patients with the AA genotype of rs3124599 and those with the GA genotype or G allele carriers (P < 0.05). CONCLUSION: In the Chinese Han population, there is a strong correlation between the Notch1 rs3124599 allele and the severity of CVA6-related HFMD. This correlation may be attributed to genetic polymorphism of rs3124599 regulating Notch1 transcription levels. These findings reveal the important role of Notch1 gene polymorphism in CVA6 infection, establishing a scientific foundation for the precise control of severe HFMD.


Asunto(s)
Alelos , Pueblo Asiatico , Enterovirus Humano A , Predisposición Genética a la Enfermedad , Enfermedad de Boca, Mano y Pie , Polimorfismo de Nucleótido Simple , Receptor Notch1 , Humanos , Masculino , Femenino , Enfermedad de Boca, Mano y Pie/genética , Enfermedad de Boca, Mano y Pie/virología , Receptor Notch1/genética , China/epidemiología , Preescolar , Lactante , Pueblo Asiatico/genética , Enterovirus Humano A/genética , Índice de Severidad de la Enfermedad , Frecuencia de los Genes , Genotipo , Niño , Pueblos del Este de Asia
11.
Virol Sin ; 39(4): 632-644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945214

RESUMEN

Hand, foot and mouth disease (HFMD), mainly caused by enterovirus 71 (EV71), has frequently occurred in the Asia-Pacific region, posing a significant threat to the health of infants and young children. Therefore, research on the infection mechanism and pathogenicity of enteroviruses is increasingly becoming important. The 3D polymerase, as the most critical RNA-dependent RNA polymerase (RdRp) for EV71 replication, is widely targeted to inhibit EV71 infection. In this study, we identified a novel host protein, AIMP2, capable of binding to 3D polymerase and inhibiting EV71 infection. Subsequent investigations revealed that AIMP2 recruits the E3 ligase SMURF2, which mediates the polyubiquitination and degradation of 3D polymerase. Furthermore, the antiviral effect of AIMP2 extended to the CVA16 and CVB1 serotypes. Our research has uncovered the dynamic regulatory function of AIMP2 during EV71 infection, revealing a novel antiviral mechanism and providing new insights for the development of antienteroviral therapeutic strategies.


Asunto(s)
Enterovirus Humano A , Ubiquitina-Proteína Ligasas , Replicación Viral , Humanos , Línea Celular , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/genética , Células HEK293 , Interacciones Huésped-Patógeno , Proteolisis , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932128

RESUMEN

This study was conducted to efficiently produce virus-like particles (VLPs) of enterovirus 71 (EV71), a causative virus of hand, foot, and mouth disease (HFMD). The expression level of the P1 precursor, a structural protein of EV71, was modified to increase VLP production, and the optimal expression level and duration of the 3CD protein for P1 cleavage were determined. The expression level and duration of 3CD were controlled by the p10 promoter, which was weakened by repeated burst sequence (BS) applications, as well as the OpIE2 promoter, which was weakened by the insertion of random untranslated region sequences of various lengths. The cleavage and production efficiency of the P1 precursor were compared based on the expression time and level of 3CD, revealing that the p10-BS5 promoter with four repeated BSs was the most effective. When P1 and 3CD were expressed using the hyperexpression vector and the p10-BS5 promoter, high levels of structural protein production and normal HFMD-VLP formation were observed, respectively. This study suggests that the production efficiency of HFMD-VLPs can be significantly enhanced by increasing the expression of the P1 precursor and controlling the amount and duration of 3CD expression.


Asunto(s)
Enterovirus Humano A , Regiones Promotoras Genéticas , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Animales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Humanos , Enfermedad de Boca, Mano y Pie/virología , Línea Celular , Células Sf9 , Vectores Genéticos/genética
13.
Viruses ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932201

RESUMEN

In this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract. Co-infection with SARS-CoV-2 and LEV-8 or EV-A71 also reduced the severity of clinical manifestations of the SARS-CoV-2 infection in the animals. Additionally, the histological data illustrated that co-infection with strain LEV8 of coxsackievirus A7 decreased the level of pathological changes induced by SARS-CoV-2 in the lungs. Research into the chemokine/cytokine profile demonstrated that the studied enteroviruses efficiently triggered this part of the antiviral immune response, which is associated with the significant inhibition of SARS-CoV-2 infection. These results demonstrate that there is significant viral interference between the studied strain LEV-8 of coxsackievirus A7 or enterovirus A71 and SARS-CoV-2 in vitro and in vivo.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Enterovirus Humano A , Mesocricetus , SARS-CoV-2 , Replicación Viral , Animales , Chlorocebus aethiops , Células Vero , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/inmunología , Enterovirus Humano A/fisiología , Enterovirus Humano A/patogenicidad , Coinfección/virología , Pulmón/virología , Pulmón/patología , Humanos , Citocinas/metabolismo , Cricetinae
14.
Front Cell Infect Microbiol ; 14: 1393680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938877

RESUMEN

Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host's innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.


Asunto(s)
Enterovirus Humano A , Inmunidad Innata , Transducción de Señal , Receptor Toll-Like 4 , Replicación Viral , Humanos , Línea Celular , Chlorocebus aethiops , Citocinas/metabolismo , Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/virología , Interacciones Huésped-Patógeno/inmunología , Inflamación/metabolismo , Inflamación/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Células Vero , Animales
15.
Biomed Pharmacother ; 176: 116866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876045

RESUMEN

Enterovirus 71 (EV71), a prominent pathogen associated with hand, foot, and mouth disease (HFMD), has been reported worldwide. To date, the advancement of effective drugs targeting EV71 remains in the preliminary experimental stage. In this study, magnolol demonstrated a significant dose-dependent inhibition of EV71 replication in vitro. It upregulated the overall expression level of nuclear factor erythroid 2 - related factor 2 (Nrf2) and facilitated its nucleus translocation, resulting in the increased expression of various ferroptosis inhibitory genes. This process led to a reduction in reactive oxygen species (ROS) accumulation induced by viral infection. Additionally, magnolol exhibited a broad-spectrum antiviral effect against enteroviruses. Notably, treatment with magnolol substantially enhanced the survival rate of EV71-infected mice, attenuated viral load in heart, liver, brain, and limb tissues, and mitigated tissue inflammation. Taken together, magnolol emerges as a promising candidate for the development of anti-EV71 drugs.


Asunto(s)
Antivirales , Compuestos de Bifenilo , Enterovirus Humano A , Lignanos , Factor 2 Relacionado con NF-E2 , Animales , Compuestos de Bifenilo/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Lignanos/farmacología , Enterovirus Humano A/efectos de los fármacos , Antivirales/farmacología , Ratones , Humanos , Glutatión/metabolismo , Replicación Viral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/virología , Transducción de Señal/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Ferroptosis/efectos de los fármacos
16.
J Biomed Sci ; 31(1): 65, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943128

RESUMEN

BACKGROUND: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS: Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS: This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.


Asunto(s)
Enterovirus Humano A , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Enterovirus Humano A/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Replicación Viral
17.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891876

RESUMEN

Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Humanos , Evasión Inmune/inmunología , Enterovirus Humano A/inmunología , Enterovirus Humano A/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Animales , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/virología
18.
J Transl Med ; 22(1): 555, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858642

RESUMEN

BACKGROUND: Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms. METHODS: The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm. RESULTS: This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis. CONCLUSION: This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.


Asunto(s)
Enterovirus Humano A , Metabolómica , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Saponinas , Transducción de Señal , Triterpenos , Replicación Viral , Replicación Viral/efectos de los fármacos , Saponinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Enterovirus Humano A/efectos de los fármacos
19.
Emerg Microbes Infect ; 13(1): 2368221, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38932432

RESUMEN

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.


Asunto(s)
Enterovirus Humano A , Proteínas de Choque Térmico HSP27 , Ribonucleoproteína Nuclear Heterogénea A1 , Replicación Viral , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Fosforilación , Humanos , Replicación Viral/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Antivirales/farmacología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Serina/metabolismo , Células HeLa , Biosíntesis de Proteínas , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Choque Térmico
20.
Vaccine ; 42(17): 3733-3743, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38705805

RESUMEN

Hand, foot, and mouth disease (HFMD) poses a significant public health threat primarily caused by four major enteroviruses: enterovirus 71 (EV71), coxsackieviruses A16, A10, and A6. Broadly protective immune responses are essential for complete protection against these major enteroviruses. In this study, we designed a new tetravalent immunogen for HFMD, validated it in silico, in vivo evaluated the immunogenicity of the DNA-based tetravalent vaccine in mice, and identified immunogenic B-cell and T-cell epitopes. A new tetravalent immunogen, VP1me, was designed based on the chimeric protein and epitope-based vaccine principles. It contains a complete EV71 VP1 protein and six reported neutralizing B-cell epitopes derived from the four major enteroviruses causing HFMD. In silico validation using multiple immunoinformatic tools indicated good attributes of the VP1me immunogen suitable for vaccine development. The VP1me-based DNA vaccine efficiently induced both humoral and cellular immune responses in BALB/cAJcl mice. A combination of in silico prediction and immunoassays enabled the identification of immunogenic linear B-cell and CD8 T-cell epitopes within the VP1me immunogen. Immunodominant linear B-cell epitopes were identified in six regions of VP1me, with one epitope located at the N-terminus of the VP1 protein (aa 9-23) regarded as a novel epitope. Interestingly, some B-cell epitopes could also induce the CD8 T-cell response, suggesting their dual functions in immune stimulation. These results lay the groundwork for further development of VP1me as a new vaccine candidate.


Asunto(s)
Anticuerpos Antivirales , Epítopos de Linfocito B , Enfermedad de Boca, Mano y Pie , Epítopos Inmunodominantes , Ratones Endogámicos BALB C , Vacunas de ADN , Vacunas Virales , Animales , Vacunas de ADN/inmunología , Epítopos de Linfocito B/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Enfermedad de Boca, Mano y Pie/inmunología , Ratones , Vacunas Virales/inmunología , Epítopos Inmunodominantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Epítopos de Linfocito T/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Enterovirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Enterovirus Humano A/inmunología , Enterovirus Humano A/genética , Inmunogenicidad Vacunal , Inmunidad Celular , Inmunidad Humoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA