Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Nutrients ; 16(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064714

RESUMEN

Fanconi anemia, a rare disorder with an incidence of 1 in 300,000, is caused by mutations in FANC genes, which affect the repair of DNA interstrand crosslinks. The disease is characterized by congenital malformations, bone marrow failure within the first decade of life, and recurrent squamous cell carcinomas of the oral cavity, esophagus, and anogenital regions starting around age 20. In this review, we propose that Fanconi anemia should be considered a premature-aging syndrome. Interestingly, the onset and severity of the life-limiting clinical features of Fanconi anemia can be influenced by lifestyle choices, such as a healthy diet and physical activity. These factors shape the epigenetic status of at-risk cell types and enhance the competence of the immune system through nutritional signaling. Fanconi anemia may serve as a model for understanding the aging process in the general population, addressing research gaps in its clinical presentation and suggesting prevention strategies. Additionally, we will discuss how the balance of genetic and environmental risk factors-affecting both cancer onset and the speed of aging-is interlinked with signal transduction by dietary molecules. The underlying nutrigenomic principles will offer guidance for healthy aging in individuals with Fanconi anemia as well as for the general population.


Asunto(s)
Anemia de Fanconi , Nutrigenómica , Humanos , Anemia de Fanconi/genética , Envejecimiento Prematuro/genética , Epigénesis Genética , Factores de Riesgo
2.
Genes (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927595

RESUMEN

Ageing has been identified as an independent risk factor for various diseases; however, the physiological basis and molecular changes related to ageing are still largely unknown. Here, we show that the level of APPL2, an adaptor protein, is significantly reduced in the major organs of aged mice. Knocking down APPL2 causes premature ageing of human umbilical vein endothelial cells (HUVECs). We find that a lack of T04C9.1, the homologue of mammalian APPL2, leads to premature ageing, slow movements, lipid deposition, decreased resistance to stresses, and shortened lifespan in Caenorhabditis elegans (C. elegans), which are associated with decreased autophagy. Activating autophagy by rapamycin or inhibition of let-363 suppresses the age-related alternations, impaired motility, and shortened lifespan of C. elegans, which are reversed by knocking down autophagy-related genes. Our work provides evidence that APPL2 and its C. elegans homologue T04C9.1 decrease with age and reveals that a lack of T04C9.1 bridges autophagy decline and ageing in C. elegans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/genética , Envejecimiento Prematuro/genética , Autofagia/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Longevidad/genética
3.
Sci Data ; 11(1): 698, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926475

RESUMEN

Major depressive disorder (MDD) and substance-use disorders (SUDs) often lead to premature aging, increasing vulnerability to cognitive decline and other forms of dementia. This study utilized advanced systems bioinformatics to identify aging "signatures" in MDD and SUDs and evaluated the potential for known lifespan-extending drugs to target and reverse these signatures. The results suggest that inhibiting the transcriptional activation of FOS gene family members holds promise in mitigating premature aging in MDD and SUDs. Conversely, antidepressant drugs activating the PI3K/Akt/mTOR pathway, a common mechanism in rapid-acting antidepressants, may accelerate aging in MDD patients, making them unsuitable for those with comorbid aging-related conditions like dementia and Alzheimer's disease. Additionally, this innovative approach identifies potential anti-aging interventions for MDD patients, such as Deferoxamine, Resveratrol, Estradiol valerate, and natural compounds like zinc acetate, genistein, and ascorbic acid, regardless of comorbid anxiety disorders. These findings illuminate the premature aging effects of MDD and SUDs and offer insights into treatment strategies for patients with comorbid aging-related conditions, including dementia and Alzheimer's disease.


Asunto(s)
Envejecimiento Prematuro , Trastorno Depresivo Mayor , Trastornos Relacionados con Sustancias , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastornos Relacionados con Sustancias/genética , Envejecimiento Prematuro/genética , Antidepresivos/uso terapéutico
4.
J Affect Disord ; 358: 422-431, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750800

RESUMEN

BACKGROUND: Evidence links major depressive disorder (MDD) with aging, but it's unclear if MDD accelerates aging and what factors mediate this transition. METHODS: Two-sample Mendelian randomization (MR) analyses were applied to estimate the causal association between MDD and frailty index (FI), telomere length (TL), and appendicular lean mass (ALM) from available genome-wide association studies in populations of European ancestry. Furthermore, we conducted mediation MR analyses to assess the mediating effects of 31 lifestyle factors or diseases on the causal relationship between MDD and aging. RESULTS: MDD was significantly causally associated with increased FI (ßIVW = 0.23, 95 % CI = 0.18 to 0.28, p = 1.20 × 10-17), shorter TL (ßIVW = -0.04, 95 % CI = -0.07 to -0.01, p = 0.01), and decreased ALM (ßIVW = -0.07, 95 % CI = -0.11 to -0.03, p = 3.54 × 10-4). The mediation analysis through two-step MR revealed smoking initiation (9.09 %), hypertension (6.67 %) and heart failure (5.36 %) mediated the causal effect of MDD on FI. Additionally, alcohol use disorders and alcohol dependence on the causal relationship between MDD and TL were found to be 17.52 % and 17.13 % respectively. LIMITATIONS: Confounding, statistical power, and Euro-centric focus limit generalization. CONCLUSION: Overall, individuals with MDD may be at a higher risk of experiencing premature aging, and this risk is partially influenced by the pathways involving smoking, alcohol use, and cardiovascular health. It underscores the importance of early intervention and comprehensive health management in individuals with MDD to promote healthy aging and overall well-being.


Asunto(s)
Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Trastorno Depresivo Mayor/genética , Masculino , Femenino , Fragilidad/genética , Envejecimiento Prematuro/genética , Envejecimiento/genética , Persona de Mediana Edad , Estilo de Vida , Población Blanca/genética , Población Blanca/estadística & datos numéricos , Anciano
5.
Commun Biol ; 7(1): 654, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806677

RESUMEN

SMG9 is an essential component of the nonsense-mediated mRNA decay (NMD) machinery, a quality control mechanism that selectively degrades aberrant transcripts. Mutations in SMG9 are associated with heart and brain malformation syndrome (HBMS). However, the molecular mechanism underlying HBMS remains unclear. We generated smg9 mutant zebrafish (smg9oi7/oi7) that have a lifespan of approximately 6 months or longer, allowing for analysis of the in vivo function of Smg9 in adults in more detail. smg9oi7/oi7 zebrafish display congenital brain abnormalities and reduced cardiac contraction. Additionally, smg9oi7/oi7 zebrafish exhibit a premature aging phenotype. Analysis of NMD target mRNAs shows a trend toward increased mRNA levels in smg9oi7/oi7 zebrafish. Spermidine oxidase (Smox) is increased in smg9oi7/oi7 zebrafish, resulting in the accumulation of byproducts, reactive oxygen species, and acrolein. The accumulation of smox mRNA due to NMD dysregulation caused by Smg9 deficiency leads to increased oxidative stress, resulting in premature aging.


Asunto(s)
Envejecimiento Prematuro , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Envejecimiento Prematuro/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Oxidativo , Mutación
6.
Science ; 384(6695): 563-572, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696572

RESUMEN

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento , Encéfalo , Ritmo Circadiano , Músculo Esquelético , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/prevención & control , Encéfalo/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Homeostasis , Músculo Esquelético/fisiología , Ratones Noqueados , Factores de Transcripción ARNTL/genética
7.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38345566

RESUMEN

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Cockayne , Progeria , Humanos , Progeria/genética , Progeria/patología , Envejecimiento Prematuro/genética , Envejecimiento , Fenotipo , Trastornos del Crecimiento/complicaciones
8.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38281187

RESUMEN

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Asunto(s)
Envejecimiento Prematuro , Histonas , Fibras Musculares Esqueléticas , Animales , Ratones , Envejecimiento Prematuro/genética , ADN , Roturas del ADN de Doble Cadena , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleosomas
9.
Int J Obes (Lond) ; 48(6): 778-787, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38273034

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is associated with premature aging, but whether this association is driven by genetic or lifestyle factors remains unclear. METHODS: Two independent discovery cohorts, consisting of twins and unrelated individuals, were examined (N = 268, aged 23-69 years). The findings were replicated in two cohorts from the same base population. One consisted of unrelated individuals (N = 1 564), and the other of twins (N = 293). Participants' epigenetic age, estimated using blood DNA methylation data, was determined using the epigenetic clocks GrimAge and DunedinPACE. The individual-level linear regression models for investigating the associations of MetS and its components with epigenetic aging were followed by within-twin-pair analyses using fixed-effects regression models to account for genetic factors. RESULTS: In individual-level analyses, GrimAge age acceleration was higher among participants with MetS (N = 56) compared to participants without MetS (N = 212) (mean 2.078 [95% CI = 0.996,3.160] years vs. -0.549 [-1.053,-0.045] years, between-group p = 3.5E-5). Likewise, the DunedinPACE estimate was higher among the participants with MetS compared to the participants without MetS (1.032 [1.002,1.063] years/calendar year vs. 0.911 [0.896,0.927] years/calendar year, p = 4.8E-11). An adverse profile in terms of specific MetS components was associated with accelerated aging. However, adjustments for lifestyle attenuated these associations; nevertheless, for DunedinPACE, they remained statistically significant. The within-twin-pair analyses suggested that genetics explains these associations fully for GrimAge and partly for DunedinPACE. The replication analyses provided additional evidence that the association between MetS components and accelerated aging is independent of the lifestyle factors considered in this study, however, suggesting that genetics is a significant confounder in this association. CONCLUSIONS: The results of this study suggests that MetS is associated with accelerated epigenetic aging, independent of physical activity, smoking or alcohol consumption, and that the association may be explained by genetics.


Asunto(s)
Envejecimiento , Epigénesis Genética , Síndrome Metabólico , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/epidemiología , Persona de Mediana Edad , Femenino , Masculino , Adulto , Anciano , Envejecimiento/genética , Envejecimiento/fisiología , Metilación de ADN/genética , Adulto Joven , Estilo de Vida , Envejecimiento Prematuro/genética
10.
Trends Endocrinol Metab ; 35(2): 97-106, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37968143

RESUMEN

Lipodystrophy syndromes are rare diseases characterized by low levels and an abnormal distribution of adipose tissue, caused by diverse genetic or acquired causes. These conditions commonly exhibit metabolic complications, including insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, and adipose tissue dysfunction. Moreover, genetic lipodystrophic laminopathies exhibit a premature aging phenotype, emphasizing the importance of restoring adipose tissue distribution and function. In this opinion, we discuss the relevance of adipose tissue reestablishment as a potential approach to alleviate premature aging and age-related complications in genetic lipodystrophy syndromes.


Asunto(s)
Envejecimiento Prematuro , Diabetes Mellitus , Resistencia a la Insulina , Lipodistrofia , Enfermedad del Hígado Graso no Alcohólico , Humanos , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/complicaciones , Lipodistrofia/genética , Lipodistrofia/metabolismo , Resistencia a la Insulina/genética
11.
Aging Cell ; 23(2): e14058, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140713

RESUMEN

Several premature aging mouse models have been developed to study aging and identify interventions that can delay age-related diseases. Yet, it is still unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA methylation in multiple tissues of four previously reported mouse models of premature aging (Ercc1, LAKI, Polg, and Xpg). We estimated DNA methylation (DNAm) age of these samples using the Horvath clock. The most pronounced increase in DNAm age could be observed in Ercc1 mice, a strain which exhibits a deficit in DNA nucleotide excision repair. Similarly, we detected an increase in epigenetic age in fibroblasts isolated from patients with progeroid syndromes associated with mutations in DNA excision repair genes. These findings highlight that mouse models with deficiencies in DNA repair, unlike other premature aging models, display accelerated epigenetic age, suggesting a strong connection between DNA damage and epigenetic dysregulation during aging.


Asunto(s)
Envejecimiento Prematuro , Humanos , Ratones , Animales , Envejecimiento Prematuro/genética , Envejecimiento/genética , Reparación del ADN/genética , Metilación de ADN/genética , Proteínas/genética , Epigénesis Genética , ADN
12.
EMBO Rep ; 24(12): e57925, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37965894

RESUMEN

In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.


Asunto(s)
Envejecimiento Prematuro , Linfocitos T , Animales , Ratones , Envejecimiento/genética , Envejecimiento Prematuro/genética , Apoptosis , Inflamación , Mamíferos
13.
Aging Cell ; 22(12): e13983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858983

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.


Asunto(s)
Envejecimiento Prematuro , Progeria , Adolescente , Niño , Humanos , Ratones , Animales , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Envejecimiento Prematuro/tratamiento farmacológico , Envejecimiento Prematuro/genética , Ghrelina/farmacología , Calidad de Vida , Piel/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Envejecimiento
14.
PeerJ ; 11: e16300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872946

RESUMEN

Background: Cellular senescence is an age-related physiological process that contributes to tissue dysfunction and accelerated onset of chronic metabolic diseases including hypertension. Indeed, elevation of blood pressure in hypertension coincides with premature vascular aging and dysfunction. In addition, onsets of metabolic disturbance and osteopenia in patients with hypertension have also been reported. It is possible that hypertension enhances premature aging and causes progressive loss of function in multiple organs. However, the landscape of cellular senescence in critical tissues affected by hypertension remains elusive. Materials and Methods: Heart, liver, bone, hypothalamus, and kidney were collected from spontaneously hypertensive rats (SHR) and age- and sex-matched normotensive Wistar rats (WT) at 6, 12, 24 and 36 weeks of age (n = 10 animals/group). Changes in mRNA levels of senescence biomarkers namely cyclin-dependent kinase (CDK) inhibitors (CDKIs), i.e., Cdkn2a (encoding p16Ink4a) and Cdkn1a (encoding p21cip1) as well as senescence-associated secretory phenotypes (SASPs), i.e., Timp1, Mmp12, Il6 and Cxcl1, were determined. Additionally, bone collagen alignment and hydroxy apatite crystal dimensions were determined by synchrotron radiation small- and wide-angle X-ray scattering (SAXS/WAXS) techniques. Results: Real-time PCR revealed that transcript levels of genes encoding CDKIs and SASPs in the heart and liver were upregulated in SHR from 6 to 36 weeks of age. Expression of Timp1 and Cxcl1 was increased in bone tissues isolated from 36-week-old SHR. In contrast, we found that expression levels of Timp1 and Il6 mRNA were decreased in hypothalamus and kidney of SHR in all age groups. Simultaneous SAXS/WAXS analysis also revealed misalignment of bone collagen fibers in SHR as compared to WT. Conclusion: Premature aging was identified in an organ directly affected by high blood pressure (i.e., heart) and those with known functional defects in SHR (i.e., liver and bone). Cellular senescence was not evident in organs with autoregulation of blood pressure (i.e., brain and kidney). Our study suggested that cellular senescence is induced by persistently elevated blood pressure and in part, leading to organ dysfunction. Therefore, interventions that can both lower blood pressure and prevent cellular senescence should provide therapeutic benefits for treatment of cardiovascular and metabolic consequences.


Asunto(s)
Envejecimiento Prematuro , Hipertensión , Humanos , Ratas , Animales , Ratas Endogámicas SHR , Envejecimiento Prematuro/genética , Interleucina-6/genética , Dispersión del Ángulo Pequeño , Ratas Wistar , Difracción de Rayos X , Hipertensión/genética , Biomarcadores , ARN Mensajero/genética , Colágeno/uso terapéutico
15.
Eur Thyroid J ; 12(6)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37878415

RESUMEN

Background: Thyroid hormone signaling is essential for development, metabolism, and response to stress but declines during aging, the cause of which is unknown. DNA damage accumulating with time is a main cause of aging, driving many age-related diseases. Previous studies in normal and premature aging mice, due to defective DNA repair, indicated reduced hepatic thyroid hormone signaling accompanied by decreased type 1 deiodinase (DIO1) and increased DIO3 activities. We investigated whether aging-related changes in deiodinase activity are driven by systemic signals or represent cell- or organ-autonomous changes. Methods: We quantified liver and plasma thyroid hormone concentrations, deiodinase activities and expression of T3-responsive genes in mice with a global, liver-specific and for comparison brain-specific inactivation of Xpg, one of the endonucleases critically involved in multiple DNA repair pathways. Results: Both in global and liver-specific Xpg knockout mice, hepatic DIO1 activity was decreased. Interestingly, hepatic DIO3 activity was increased in global, but not in liver-specific Xpg mutants. Selective Xpg deficiency and premature aging in the brain did not affect liver or systemic thyroid signaling. Concomitant with DIO1 inhibition, Xpg -/- and Alb-Xpg mice displayed reduced thyroid hormone-related gene expression changes, correlating with markers of liver damage and cellular senescence. Conclusions: Our findings suggest that DIO1 activity during aging is predominantly modified in a tissue-autonomous manner driven by organ/cell-intrinsic accumulating DNA damage. The increase in hepatic DIO3 activity during aging largely depends on systemic signals, possibly reflecting the presence of circulating cells rather than activity in hepatocytes.


Asunto(s)
Envejecimiento Prematuro , Encéfalo , Trastornos por Deficiencias en la Reparación del ADN , Hígado , Animales , Ratones , Envejecimiento/genética , Envejecimiento Prematuro/genética , Encéfalo/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Yoduro Peroxidasa/genética , Hígado/metabolismo , Ratones Noqueados , Hormonas Tiroideas/metabolismo
16.
Aging Cell ; 22(10): e13964, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594403

RESUMEN

Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the BLM gene, which is involved in genome stability. Patients with BSyn present with poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other signs of premature aging such as early, progressive hair loss and cataracts. We set out to determine epigenetic age in BSyn, which can be a better predictor of health and disease over chronological age. Our results show for the first time that patients with BSyn have evidence of accelerated epigenetic aging across several measures in blood lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit accelerated methylation age in multiple tissues, including brain, blood, kidney, heart, and skin, according to the brain methylation clock. Overall, we find that Bloom syndrome is associated with accelerated epigenetic aging effects in multiple tissues and more generally a strong effect on CpG methylation levels.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Bloom , Humanos , Animales , Ratones , Síndrome de Bloom/genética , Síndrome de Bloom/diagnóstico , Epigénesis Genética , Envejecimiento/genética , Envejecimiento Prematuro/genética , Metilación , Metilación de ADN/genética
17.
Aging Cell ; 22(10): e13952, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565451

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by nuclear envelope alterations that lead to accelerated aging and premature death. Several studies have linked health and longevity to cell-extrinsic mechanisms, highlighting the relevance of circulating factors in the aging process as well as in age-related diseases. We performed a global plasma proteomic analysis in two preclinical progeroid models (LmnaG609G/G609G and Zmpste24-/- mice) using aptamer-based proteomic technology. Pathways related to the extracellular matrix, growth factor response and calcium ion binding were among the most enriched in the proteomic signature of progeroid samples compared to controls. Despite the global downregulation trend found in the plasma proteome of progeroid mice, several proteins associated with cardiovascular disease, the main cause of death in HGPS, were upregulated. We also developed a chronological age predictor using plasma proteome data from a cohort of healthy mice (aged 1-30 months), that reported an age acceleration when applied to progeroid mice, indicating that these mice exhibit an "old" plasma proteomic signature. Furthermore, when compared to naturally-aged mice, a great proportion of differentially expressed circulating proteins in progeroid mice were specific to premature aging, highlighting secretome-associated differences between physiological and accelerated aging. This is the first large-scale profiling of the plasma proteome in progeroid mice, which provides an extensive list of candidate circulating plasma proteins as potential biomarkers and/or therapeutic targets for further exploration and hypothesis generation in the context of both physiological and premature aging.


Asunto(s)
Envejecimiento Prematuro , Progeria , Humanos , Ratones , Animales , Progeria/metabolismo , Envejecimiento Prematuro/genética , Proteómica , Proteoma/metabolismo , Secretoma , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
18.
Dermatologie (Heidelb) ; 74(9): 696-706, 2023 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-37650893

RESUMEN

Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Cockayne , Envejecimiento de la Piel , Humanos , Calidad de Vida , Envejecimiento/genética , Síndrome de Cockayne/genética , Envejecimiento Prematuro/genética
19.
Exp Neurol ; 368: 114481, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463612

RESUMEN

Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated ß-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.


Asunto(s)
Envejecimiento Prematuro , Desnutrición , Embarazo , Ratones , Animales , Femenino , Memoria Espacial , Envejecimiento Prematuro/genética , Caseínas/metabolismo , Estrés Oxidativo , Trastornos de la Memoria/etiología , Bulbo Olfatorio/fisiología , Desnutrición/complicaciones , Desnutrición/metabolismo
20.
Cell Rep ; 42(8): 112830, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37481724

RESUMEN

MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.


Asunto(s)
Envejecimiento Prematuro , Neoplasias , Humanos , Ratones , Animales , Envejecimiento Prematuro/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Incidencia , Neoplasias/patología , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA