Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Exp Cell Res ; 440(2): 114148, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936760

RESUMEN

UBA5, a ubiquitin-like activated enzyme involved in ufmylation and sumoylation, presents a viable target for pancreatic and breast cancer treatments, yet its role in lung adenocarcinoma (LUAD) remains underexplored. This study reveals UBA5's tumor-promoting effect in LUAD, as evidenced by its upregulation in patients and positive correlation with TNM stages. Elevated UBA5 levels predict poor outcomes for these patients. Pharmacological inhibition of UBA5 using DKM 2-93 significantly curtails the growth of A549, H1299, and cisplatin-resistant A549 (A549/DDP) LUAD cells in vitro. Additionally, UBA5 knockdown via shRNA lentivirus suppresses tumor growth both in vitro and in vivo. High UBA5 expression adversely alters the tumor immune microenvironment, affecting immunostimulators, MHC molecules, chemokines, receptors, and immune cell infiltration. Notably, UBA5 expression correlates positively with M2 macrophage infiltration, the predominant immune cells in LUAD. Co-culture experiments further demonstrate that UBA5 knockdown directly inhibits M2 macrophage polarization and lactate production in LUAD. Moreover, in vivo studies show reduced M2 macrophage infiltration following UBA5 knockdown. UBA5 expression is also associated with increased tumor heterogeneity, including tumor mutational burden, microsatellite instability, neoantigen presence, and homologous recombination deficiency. Experiments indicate that UBA5 overexpression promotes cisplatin resistance in vitro, whereas UBA5 inhibition enhances cisplatin sensitivity in both in vitro and in vivo settings. Overall, these findings suggest that targeting UBA5 inhibits LUAD by impeding cancer cell proliferation, M2 macrophage polarization, and cisplatin resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Cisplatino , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Femenino , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Bioorg Med Chem Lett ; 107: 129779, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729317

RESUMEN

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.


Asunto(s)
Acrilamidas , Humanos , Acrilamidas/química , Acrilamidas/farmacología , Acrilamidas/síntesis química , Estructura Molecular , Proteolisis/efectos de los fármacos , Descubrimiento de Drogas , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Relación Estructura-Actividad
3.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614228

RESUMEN

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Asunto(s)
Cardiotoxicidad , Ciclopentanos , Doxorrubicina , Miocitos Cardíacos , Proteína NEDD8 , Pirimidinas , Animales , Ratones , Apoptosis/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/patología , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/uso terapéutico , Doxorrubicina/efectos adversos , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína NEDD8/metabolismo , Proteína NEDD8/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/farmacología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética
4.
Front Biosci (Landmark Ed) ; 29(4): 144, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38682183

RESUMEN

BACKGROUND: Gliomas are characterized by aggressive behavior, leading to severe disability and high mortality. Ubiquitin-like modifier activating enzyme 2 (UBA2) is a subunit of the E1-activating enzyme involved in the SUMOylation (SUMO, small ubiquitin-related modifier) of numerous proteins. Although the abnormality of UBA2 is linked to the progression of various tumor types, the role of UBA2 in glioma is still unknown. METHODS: A bioinformatic analysis using several public databases was conducted to examine the expression level, clinicopathological correlations, and prognostic significance of UBA2 in glioma. The correlation between UBA2 expression and drug sensitivity in cancers was also explored. Multiple cellular experiments were conducted to validate the role of UBA2 in glioma. RESULTS: Analysis of multiple databases and cellular experiments revealed that UBA2 was overexpressed in glioma tissues and cell lines, respectively. UBA2 expression in gliomas correlated with World Health Organization (WHO) grade, IDH gene status, 1p19q deletion, histological type, and immune cell infiltration in glioma. UBA2 expression in carcinomas also correlated with drug sensitivity. Kaplan-Meier analysis revealed that high expression of UBA2 predicted poorer survival in glioma patients. A nomogram model containing UBA2 expression was constructed for clinical practice. Knockdown of UBA2 was observed to suppress glioma cell progression and sensitize glioma cells to irradiation in vitro. CONCLUSION: Overall, this research showed that UBA2 might be involved not only in the development of glioma but also in the regulation of immunity, drug sensitivity, and radiosensitivity. Therefore, UBA2 may be a potential target for therapy and a candidate biomarker for glioma diagnosis and prognosis.


Asunto(s)
Biomarcadores de Tumor , Glioma , Enzimas Activadoras de Ubiquitina , Glioma/diagnóstico , Glioma/inmunología , Glioma/mortalidad , Glioma/terapia , Línea Celular Tumoral , Pronóstico , Enzimas Activadoras de Ubiquitina/análisis , Enzimas Activadoras de Ubiquitina/metabolismo , Inmunoterapia , Tolerancia a Radiación , Progresión de la Enfermedad
5.
Leuk Lymphoma ; 65(7): 978-988, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38489672

RESUMEN

Adult T-cell leukemia (ATL), caused by HTLV-1, is the most lethal hematological malignancy. NEDD8-activating enzyme (NAE) is a component of the NEDD8 conjunction pathway that regulates cullin-RING ubiquitin ligase (CRL) activity. HTLV-1-infected T cells expressed higher levels of NAE catalytic subunit UBA3 than normal peripheral blood mononuclear cells. NAE1 knockdown inhibited proliferation of HTLV-1-infected T cells. The NAE1 inhibitor MLN4924 suppressed neddylation of cullin and inhibited the CRL-mediated turnover of tumor suppressor proteins. MLN4924 inhibited proliferation of HTLV-1-infected T cells by inducing DNA damage, leading to S phase arrest and caspase-dependent apoptosis. S phase arrest was associated with CDK2 and cyclin A downregulation. MLN4924-induced apoptosis was mediated by the upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins. Furthermore, MLN4924 inhibited NF-κB, AP-1, and Akt signaling pathways and activated JNK. Therefore, neddylation inhibition is an attractive strategy for ATL therapy. Our findings support the use of MLN4924 in ATL clinical trials.


Asunto(s)
Apoptosis , Proliferación Celular , Ciclopentanos , Virus Linfotrópico T Tipo 1 Humano , Proteína NEDD8 , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Pirimidinas , Transducción de Señal , Factor de Transcripción AP-1 , Enzimas Activadoras de Ubiquitina , Humanos , Pirimidinas/farmacología , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Ciclopentanos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Proteína NEDD8/metabolismo , Proliferación Celular/efectos de los fármacos , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Ubiquitinas/metabolismo , Proteínas Cullin/metabolismo
6.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553562

RESUMEN

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Asunto(s)
Autofagosomas , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Autofagosomas/metabolismo , Autofagia/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474091

RESUMEN

Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
8.
J Transl Med ; 22(1): 148, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351014

RESUMEN

Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Humanos , Regulación hacia Arriba/genética , Neoplasias Gástricas/patología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transformación Celular Neoplásica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
9.
Phytomedicine ; 126: 155148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387271

RESUMEN

BACKGROUND: Finding a drug for early intervention in the hepatic fibrosis process has important clinical significance. Previous studies have suggested SUMOylation as a potential target for intervention in hepatic fibrosis. However, the role of SAE1, a marker of SUMOylation, in hepatic fibrosis is unknown. Additionally, whether ginkgolic acid (GA), a SUMOylation inhibitor, inhibits hepatic fibrosis by inhibiting SUMO1-activating enzyme subunit 1 (SAE1) should be further investigated. METHODS: Liver tissues of patients with hepatic cirrhosis and a rat model of hepatic fibrosis constructed with CCl4 (400 mg/kg, twice weekly) or TAA (200 mg/kg, twice weekly) were selected, and the degree of hepatic fibrosis was then evaluated using H&E, Sirius red, and Masson's trichrome staining. After knockdown or overexpression of SAE1 in hepatic stellate cells, the expression levels of ferroptosis and hepatic fibrosis markers were measured in vitro. After intervention with a ferroptosis inhibitor, the expression levels were again measured in vivo and in vitro. RESULTS: We first demonstrated that SAE1 increased in patients with hepatic cirrhosis. Subsequently, testing of the rat hepatic fibrosis model confirmed that GA reduced the expression of SAE1 and improved hepatic fibrosis in rats. Then, we used hepatic stellate cell lines to confirm in vitro that GA inhibited SAE1 expression and induced ferroptosis, and that overexpression of SAE1 or inhibition of ferroptosis reversed this process. Finally, we confirmed in vivo that GA induced ferroptosis and alleviated the progression of hepatic fibrosis, while inhibiting ferroptosis also reversed the progression of hepatic fibrosis in rats. CONCLUSION: SAE1 is a potential anti-fibrotic target protein, and GA induces ferroptosis of hepatic stellate cells by targeting SAE1 to exert an anti-hepatic fibrosis effect, which lays an experimental foundation for the future clinical application of its anti-hepatic fibrosis effect.


Asunto(s)
Ferroptosis , Salicilatos , Humanos , Ratas , Animales , Transducción de Señal , Cirrosis Hepática/metabolismo , Hígado , Células Estrelladas Hepáticas , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/farmacología
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 199-209, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38298057

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enzimas Activadoras de Ubiquitina , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transducción de Señal , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
11.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397039

RESUMEN

Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Encéfalo/metabolismo
12.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360993

RESUMEN

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Humanos , Mutación Missense , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
13.
EMBO J ; 43(2): 250-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177505

RESUMEN

Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.


Asunto(s)
Péptidos , Enzimas Activadoras de Ubiquitina , Ubiquitina , Humanos , Animales , Ratones , Ubiquitinación , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Mutación
14.
Nat Struct Mol Biol ; 31(2): 351-363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182926

RESUMEN

UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Catálisis , Ubiquitinación , Proteínas de Unión a Calmodulina/metabolismo
15.
Elife ; 122023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079206

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.


Although rare diseases only impact a small fraction of the population, they still affect hundreds of millions of people around the world. Many of these conditions are caused by variations in inherited genetic material, which nowadays can be readily detected using advanced sequencing technologies. However, establishing a connection between these genetic changes and the disease they cause often requires further in-depth study. One such rare inherited disorder is developmental and epileptic encephalopathy type 44 (DEE44), which is caused by genetic variations within the gene for UBA5 (short for ubiquitin-like modifier activating enzyme 5). For DEE44 to occur, both copies of the gene for UBA5, known as alleles, must contain one or more detrimental variation. Although all these variations prevent UBA5 from working correctly, the level of disruption they cause, known as allelic strength, varies between them. However, it remained unclear whether the severity of the DEE44 disease directly corresponds with the allelic strength of these variants. To answer this question, Pan et al. tested how different genetic variants found in patients with DEE44 affected the behavior and health of fruit flies. These results were then compared against in vitro biochemical assays testing how alleles containing these variants impacted the function of UBA5. When the fly gene for the enzyme was replaced with the human gene containing variations associated with DEE44, flies exhibited changes in their survival rates, developmental progress, lifespan, and neurological well-being. However, not all of the variants caused ill effects. Using this information, the patient variants were classified into three categories based on the severity of their effect: mild, intermediate, and severe. Biochemical assays supported this classification and revealed that the variants that caused more severe symptoms tended to inhibit the activity of UBA5 more significantly. Pan et al. further analyzed the nature of the variants in the patients and showed that most patients typically carried one mild and one strong variant, although some individuals did have two intermediate variants. Notably, no patients carried two severe variants. This indicates that DEE44 is the result of UBA5 only partially losing its ability to work correctly. The study by Pan et al. provides a framework for assessing the impact of genetic variants associated with DEE44, aiding the diagnosis and treatment of the disorder. However, further research involving more patients, more detailed clinical data, and testing other newly identified DEE44-causing variants is needed to solidify the correlation between allelic strength and disease severity.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Trastornos del Movimiento , Enzimas Activadoras de Ubiquitina , Humanos , Encefalopatías/genética , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética
16.
Nat Commun ; 14(1): 7970, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042859

RESUMEN

The attachment of the ubiquitin-like protein ISG15 to substrates by specific E1-E2-E3 enzymes is a well-established signalling mechanism of the innate immune response. Here, we present a 3.45 Å cryo-EM structure of a chemically trapped UBE1L-UBE2L6 complex bound to activated ISG15. This structure reveals the details of the first steps of ISG15 recognition and UBE2L6 recruitment by UBE1L (also known as UBA7). Taking advantage of viral effector proteins from severe acute respiratory coronavirus 2 (SARS-CoV-2) and influenza B virus (IBV), we validate the structure and confirm the importance of the ISG15 C-terminal ubiquitin-like domain in the adenylation reaction. Moreover, biochemical characterization of the UBE1L-ISG15 and UBE1L-UBE2L6 interactions enables the design of ISG15 and UBE2L6 mutants with altered selectively for the ISG15 and ubiquitin conjugation pathways. Together, our study helps to define the molecular basis of these interactions and the specificity determinants that ensure the fidelity of ISG15 signalling during the antiviral response.


Asunto(s)
Citocinas , Ubiquitinas , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Virales
17.
Cell Biol Toxicol ; 39(6): 3323-3340, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906341

RESUMEN

Human malignant gliomas are the most common and aggressive primary malignant tumors of the human central nervous system. Vasculogenic mimicry (VM), which refers to the formation of a tumor blood supply system independently of endothelial cells, contributes to the malignant progression of glioma. Therefore, VM is considered a potential target for glioma therapy. Accumulated evidence indicates that alterations in SUMOylation, a reversible post-translational modification, are involved in tumorigenesis and progression. In the present study, we found that UBA2 and RALY were upregulated in glioma tissues and cell lines. Downregulation of UBA2 and RALY inhibited the migration, invasion, and VM of glioma cells. RALY can be SUMOylated by conjugation with SUMO1, which is facilitated by the overexpression of UBA2. The SUMOylation of RALY increases its stability, which in turn increases its expression as well as its promoting effect on FOXD1 mRNA. The overexpression of FOXD1 promotes DKK1 transcription by activating its promoter, thereby promoting glioma cell migration, invasion, and VM. Remarkably, the combined knockdown of UBA2, RALY, and FOXD1 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. UBA2/RALY/FOXD1/DKK1 axis may play crucial roles in regulating VM in glioma, which may contribute to the development of potential strategies for the treatment of gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ratones , Animales , Humanos , Neoplasias Encefálicas/metabolismo , Sumoilación , Ratones Desnudos , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Glioma/genética , Glioma/metabolismo , Línea Celular Tumoral , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción Forkhead/genética
18.
Org Lett ; 25(41): 7502-7506, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37801638

RESUMEN

The first total synthesis of the E1 ubiquitin-activating enzyme inhibitor, himeic acid A, is reported. A McCombie reaction was used to form the core γ-pyrone via a 6π-electrocyclization. A dioxenone ring-opening/acyl ketene trapping reaction with a primary amide provided the unusual unsymmetrical imide functionality. Other key steps include the use of an Evans auxiliary alkylation (d.r. ≥ 95:5) to install the (S)-2-methyl succinic acid fragment and a cross-metathesis to install the unsaturated side-chain.


Asunto(s)
Ácidos Grasos Insaturados , Pironas , Pironas/farmacología , Alquilación , Enzimas Activadoras de Ubiquitina/metabolismo
19.
Med Oncol ; 40(10): 286, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656220

RESUMEN

Immunosuppressive cells play important roles in generating an immunosuppressive tumor microenvironment and facilitating tumor immune escape. However, the molecular mechanisms underlying their immunosuppressive effects remain unclear. UBA3, the sole catalytic subunit of the neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8)-activating enzyme E1, is highly expressed in various human malignancies, along with an activated neddylation pathway. In this study, we investigated the relationships between the UBA3-dependent neddylation pathway and the infiltration of several immunosuppressive cell populations in lung adenocarcinoma (LUAD). We explored the regulatory mechanisms of UBA3 in LUAD cells by using mRNA sequencing and functional enrichment analyses. Correlations between neddylation and immune infiltrates were assessed by Western blotting, real-time PCR, and analyses of public databases. We found elevated levels of UBA3 expression in LUAD tissues compared to adjacent normal tissues. Blocking UBA3 and the neddylation pathway promoted the accumulation of the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκBα), inhibiting the gene expression of tumor cell-derived cytokines such as C-C motif chemokine ligand (CCL) 2, C-X-C motif ligand (CXCL)1, CXCL2, colony-stimulating factor (CSF) 1, CSF2 interleukin (IL)-6, and IL-1B. Moreover, the overexpression of UBA3 in LUAD cells was associated with the secretion of these cytokines, and the recruitment and infiltration of immunosuppressive cells including tumor-associated macrophages (TAMs), plasmacytoid dendritic cells (pDCs), Th2 cells and T-regulatory cells (Tregs). This could facilitate the tumor immune escape and malignant progression of LUAD. Our findings provide new insights into the role of UBA3 in establishing an immunosuppressive tumor microenvironment by modulating nuclear factor kappa B (NF-кB) signaling and the neddylation pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Enzimas Activadoras de Ubiquitina , Humanos , Adenocarcinoma del Pulmón/metabolismo , Citocinas , Ligandos , Neoplasias Pulmonares/metabolismo , Proteína NEDD8 , FN-kappa B , Microambiente Tumoral , Enzimas Activadoras de Ubiquitina/metabolismo
20.
Nat Commun ; 14(1): 4798, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558718

RESUMEN

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Auranofina/farmacología , Ubiquitinación , Enzimas Activadoras de Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA