Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008710

RESUMEN

Cryptochrome 1 and 2 (CRY1 and CRY2) are blue light receptors involved in the regulation of hypocotyl elongation, cotyledon expansion, and flowering time in Arabidopsisthaliana. Two cryptochrome-interacting proteins, Blue-light Inhibitor of Cryptochrome 1 and 2 (BIC1 and BIC2), have been found in Arabidopsis. BIC1 plays critical roles in suppressing the physiological activities of CRY2, which include the blue light-dependent dimerization, phosphorylation, photobody formation, and degradation process, but the functional characterization of BIC protein in other crops has not yet been performed. To investigate the function of BIC protein in rice (Oryza sativa), two homologous genes of Arabidopsis BIC1 and BIC2, namely OsBIC1 and OsBIC2 (OsBICs), were identified. The overexpression of OsBIC1 and OsBIC2 led to increased leaf sheath length, whereas mutations in OsBIC1 displayed shorter leaf sheath in a blue light intensity-dependent manner. OsBIC1 regulated blue light-induced leaf sheath elongation through direct interaction with OsCRY1a, OsCRY1b, and OsCRY2 (OsCRYs). Longitudinal sections of the second leaf sheath demonstrated that OsBIC1 and OsCRYs controlled leaf sheath length by influencing the ratio of epidermal cells with different lengths. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis further proved that OsBIC1 and OsCRYs regulated similar transcriptome changes in regulating Gibberellic Acids (GA)-responsive pathway. Taken together, these results suggested that OsBIC1 and OsCRYs worked together to regulate epidermal cell elongation and control blue light-induced leaf sheath elongation through the GA-responsive pathway.


Asunto(s)
Giberelinas/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Unión Proteica/efectos de la radiación , Transcriptoma/genética , Transcriptoma/efectos de la radiación
2.
Food Chem ; 338: 127782, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798826

RESUMEN

UV-B-driven modulation of secondary metabolism in peach fruit by enhancing the biosynthesis of specific phenolic subclasses, is attracting interest among consumers. However, current literature explored the UV-B-induced metabolic changes only in peach skin subjected to direct UV-B irradiation. Accordingly, this study aimed to understand whether UV-B radiation penetrates the fruit skin and is able to induce metabolic changes also within the inner flesh. Peaches were UV-B-irradiated either 10 or 60 min, and the flesh was sampled after 24 and 36 h. Non-targeted metabolomics revealed that UV-B has a strong impact on peach flesh metabolome, determining an initial decrease after 24 h, followed by an overall increase after 36 h, particularly for terpenoids, phenylpropanoids, phytoalexins and fatty acids in the 60 min UV-B-treated samples (+150.02, +99.14, +43.79 and +25.44 log2FC, respectively). Transmittance analysis indicated that UV-B radiation does not penetrate below the skin, suggesting a possible signalling pathway between tissues.


Asunto(s)
Frutas/metabolismo , Frutas/efectos de la radiación , Metaboloma/efectos de la radiación , Epidermis de la Planta/efectos de la radiación , Prunus persica/metabolismo , Prunus persica/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Prunus persica/crecimiento & desarrollo
3.
Plant Physiol Biochem ; 134: 129-136, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30093294

RESUMEN

At temperate latitudes environmental factors such as irradiance, including ultraviolet-B radiation (UV-B, 280-315 nm), temperature and day length vary widely over the course of a year in a concerted way. In the present study physiological acclimation of photoprotection, growth and development of the model organism Arabidopsis thaliana were correlated to these strongly but gradually changing conditions in a one year field study. Plants were sown in the field avoiding any manipulation (and abrupt change) during their life. Developmental rate was strongly dependent on prevailing temperature. Moderate signs of light stress in form of photoinhibition at photosystem II were significantly related to solar irradiances while amount of DNA damage was low and not correlated to UV-B irradiance. Although all the markers were hypothesized to primarily react to radiation, multiple regression analysis showed at least a similarly strong influence of temperature as that of light. Especially for the classical UV screening compounds a positive correlation to UV-B radiation during the course of the year was absent, whereas there was a significant negative correlation between temperature and quercetin content. The sum of violaxanthin cycle pigments was correlated to both, irradiance and temperature, but with opposite sign. Epidermal UV-B transmittance was also much better related to air temperature than to UV-B irradiance. The data show that under natural conditions temperature has at least a similar importance for photoprotective acclimation and partially also for photosensitivity as solar irradiance.


Asunto(s)
Aclimatación/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Estaciones del Año , Temperatura , Rayos Ultravioleta , ADN de Plantas/metabolismo , Fenotipo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Epidermis de la Planta/efectos de la radiación , Análisis de Regresión , Factores de Tiempo
4.
Plant Physiol Biochem ; 135: 511-519, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30463801

RESUMEN

Ultraviolet-B (UVB) radiation impacts the plant behaviour in many ways, including modifying their secondary metabolism. Although several studies have quantified the UV-B effects on phenolic composition, most of them focused on leaves or investigated a limited amount of phenolics. The present work aimed to investigate the phenolic changes after two postharvest UV-B treatments, 10 and 60 min (1.39 kJ m-2 and 8.33 kJ m-2, respectively), on peach (Prunus persica cv Fairtime) fruit with a non-targeted, whole profiling approach, and targeted gene expression analysis on skin. After both UV-B exposures, peach fruit were harvested at 24 and 36 h for "phenol-omics" analysis, while additional 6 h and 12 h recovery times were used for gene expression analysis. Our results revealed that both UV-B exposures resulted in a decrease of several phenolic compounds, such as anthocyanins, after 24 h from the exposure. In contrast, the expression of the UV-B signalling components, the phenylpropanoid biosynthesis genes and their transcriptional regulators increased 6 h after the treatment, mostly with a UV-B-dose dependent behaviour, preceding an accumulation of most phenolics in both the UV-B treatments at 36 h compared to 24 h. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed that flavonoids, particularly anthocyanins, were the main phenolic subclasses accumulated after UV-B exposure.


Asunto(s)
Frutas/efectos de la radiación , Prunus persica/efectos de la radiación , Antocianinas/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Epidermis de la Planta/metabolismo , Epidermis de la Planta/efectos de la radiación , Prunus persica/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma , Rayos Ultravioleta
6.
Plant Physiol ; 174(2): 1110-1126, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28400494

RESUMEN

Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family.


Asunto(s)
Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Rayos Ultravioleta , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación , Fenómenos Biomecánicos , División Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , MicroARNs/genética , MicroARNs/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de la radiación , Transcriptoma/genética , Zea mays/genética
7.
Plant Cell Physiol ; 57(10): 2213-2220, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27516415

RESUMEN

Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development.


Asunto(s)
Oryza/crecimiento & desarrollo , Rizoma/crecimiento & desarrollo , Luz , Espectroscopía de Resonancia Magnética , Oryza/anatomía & histología , Oryza/efectos de la radiación , Oryza/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de la radiación , Reproducción/efectos de la radiación , Rizoma/anatomía & histología , Rizoma/efectos de la radiación , Rizoma/ultraestructura
8.
Genes Dev ; 30(13): 1529-41, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27401556

RESUMEN

Growth of a complex multicellular organism requires coordinated changes in diverse cell types. These cellular changes generate organs of the correct size, shape, and functionality. In plants, the growth hormone auxin induces stem elongation in response to shade; however, which cell types of the stem perceive the auxin signal and contribute to organ growth is poorly understood. Here, we blocked the transcriptional response to auxin within specific tissues to show that auxin signaling is required in many cell types for correct hypocotyl growth in shade, with a key role for the epidermis. Combining genetic manipulations in Arabidopsis thaliana with transcriptional profiling of the hypocotyl epidermis from Brassica rapa, we show that auxin acts in the epidermis in part by inducing activity of the locally acting, growth-promoting brassinosteroid pathway. Our findings clarify cell-specific auxin function in the hypocotyl and highlight the complexity of cell type interactions within a growing organ.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/efectos de la radiación , Mutación , Proteínas Nucleares/genética , Epidermis de la Planta/efectos de la radiación , Transducción de Señal , Luz Solar , Factores de Transcripción
9.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26177782

RESUMEN

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Asunto(s)
Abelmoschus/efectos de la radiación , Flavonoides/efectos de la radiación , Hibiscus/efectos de la radiación , Solanum lycopersicum/efectos de la radiación , Vicia faba/efectos de la radiación , Zea mays/efectos de la radiación , Abelmoschus/fisiología , Aclimatación , Ritmo Circadiano , Flavonoides/fisiología , Hibiscus/fisiología , Solanum lycopersicum/fisiología , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Luz Solar , Rayos Ultravioleta , Vicia faba/fisiología , Zea mays/fisiología
10.
Genet Mol Res ; 14(2): 3807-16, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25966151

RESUMEN

The importance of the ROP small GTPase signaling pathway in the regulation of cellular polarity growth in eukaryotes has been thoroughly studied. In this study, we examined the LeROP small GTPase (related to Arabidopsis thaliana genome LeROP GTPase in tomato) signaling of cell polarity growth in the mutant (M-1) tomato. Interestingly, we detected expansive growth of epidermis cells in M-1, in which the leaves appeared slightly lobed shaped. However, we observed jigsaw puzzle shaped and deeply lobed shaped leaves in wild-type leaf epidermis cells. The t-test showed significant difference (P < 0.05). Based on previous studies of the AtROP gene in Arabidopsis leaf epidermis cells, we hypothesized that the growth of mutant M-1 tomato leaf epidermis cell is related to AtROP gene signal transmission. The results of reverse transcription-polymerase chain reaction showed the expression of LeROP2, LeROP4, and LeROP7 in M-1 mutants were stronger than in wild-type cells. At the flowering stage, LeROP2 GTPase showed no expression in wild-type cells, but was expressed in mutant cells. This study revealed a link between the low-energy ion beam and the ROP GTPase signaling pathway in tomato. In addition, the ROP gene changes analyzed suggest a new mechanism for mutations following low-energy ion beam implantation.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Bases , Expresión Génica , Solanum lycopersicum/citología , Solanum lycopersicum/efectos de la radiación , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de la radiación , Análisis de Secuencia de ADN , Transducción de Señal
11.
Plant Cell Environ ; 38(5): 941-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25040832

RESUMEN

Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.


Asunto(s)
Flavonoides/metabolismo , Pisum sativum/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Color , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Fenoles/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Rayos Ultravioleta
12.
J Integr Plant Biol ; 57(1): 93-105, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231366

RESUMEN

In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.


Asunto(s)
Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Hydrocharitaceae/citología , Hydrocharitaceae/efectos de la radiación , Luz , Células Vegetales/metabolismo , Epidermis de la Planta/citología , Secuencia de Aminoácidos , Anticuerpos/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Reacciones Cruzadas , Genes de Plantas , Hydrocharitaceae/genética , Espacio Intracelular/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Péptidos/metabolismo , Fosforilación/efectos de la radiación , Fototropinas/química , Fototropinas/metabolismo , Células Vegetales/efectos de la radiación , Epidermis de la Planta/efectos de la radiación , Alineación de Secuencia
13.
Plant Cell Rep ; 33(5): 697-706, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633990

RESUMEN

Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Luz , Microtúbulos/metabolismo , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Transducción de Señal
14.
Plant Cell Environ ; 37(10): 2433-52, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24548021

RESUMEN

Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2 < 10 kPa), the gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants.


Asunto(s)
Gases/metabolismo , Modelos Biológicos , Oryza/fisiología , Oxígeno/metabolismo , Respiración de la Célula , Simulación por Computador , Oscuridad , Difusión , Luz , Oryza/efectos de la radiación , Permeabilidad , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Transpiración de Plantas , Agua/fisiología
15.
Plant Sci ; 215-216: 84-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24388518

RESUMEN

Cytosolic alkalization has been shown to function as a key player in multiple stimuli-induced stomatal closure, but its role and relationship with hydrogen peroxide (H2O2) in ultraviolet B (UV-B)-induced stomatal closure remains unknown. In this paper, by stomatal bioassay and laser-scanning confocal microscopy, we observed that 0.5 W m(-2) UV-B induced cytosolic alkalization and H2O2 production in guard cells while inducing stomatal closure in Arabidopsis (Arabidopsis thaliana). Butyrate (a weak acid) reduced the cytosolic pH/H2O2 production and prevented stomatal closure by UV-B. Methylamine (a weak base) induced H2O2 production and stomatal closure while enhancing the cytosolic alkalization in guard cells under light alone. The rise in cytosolic pH of wild-type guard cells on exposure to UV-B was evident at 15 min and substantial at 45 min while H2O2 production started to largely increase after 60 min. The failure of UV-B-induced H2O2 production in AtrbohD/F guard cells did not affect the changes of guard cell pH during the first 60 min of UV-B radiation, but largely suppressed cytosolic alkalization after 60 min of UV-B radiation. These results indicate that cytosolic alkalization mediates UV-B-induced stomatal closure via activating H2O2 production and that H2O2 production can feedback-enhance cytosolic alkalization in Arabidopsis guard cells.


Asunto(s)
Arabidopsis/fisiología , Citosol/química , Peróxido de Hidrógeno/metabolismo , Células Vegetales/metabolismo , Epidermis de la Planta/metabolismo , Estomas de Plantas/fisiología , Rayos Ultravioleta , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Ácido Butírico/farmacología , Citosol/efectos de los fármacos , Citosol/efectos de la radiación , Retroalimentación Fisiológica , Concentración de Iones de Hidrógeno , Metilaminas/farmacología , Células Vegetales/química , Células Vegetales/efectos de los fármacos , Células Vegetales/efectos de la radiación , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de la radiación
16.
Physiol Plant ; 152(1): 1-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24410953

RESUMEN

ETHYLMALONIC ENCEPHALOPATHY PROTEIN 1 (ETHE1) encodes sulfur dioxygenase (SDO) activity regulating sulfide levels in living organisms. It is an essential gene and mutations in ETHE1 leads to ethylmalonic encephalopathy (EE) in humans and embryo lethality in Arabidopsis. At present, very little is known regarding the role of ETHE1 beyond the context of EE and almost nothing is known about factors affecting its regulation in plant systems. In this study, we have identified, cloned and characterized OsETHE1, a gene encoding ETHE1-like protein from Oryza sativa. ETHE1 proteins in general are most similar to glyoxalase II (GLYII) and hence OsETHE1 has been earlier annotated as OsGLYII1, a putative GLYII gene. Here we show that OsETHE1 lacks GLYII activity and is instead an ETHE1 homolog being localized in mitochondria like its human and Arabidopsis counterparts. We have isolated and analyzed 1618 bp OsETHE1 promoter (pOsETHE1) to examine the factors affecting OsETHE1 expression. For this, transcriptional promoter pOsETHE1: 5-bromo-5-chloro-3-indolyl-ß-D-glucuronide (GUS) fusion construct was made and stably transformed into rice. GUS expression pattern of transgenic pOsETHE1:GUS plants reveal a high root-specific expression of OsETHE1. The pOsETHE1 activity was stimulated by Ca(II) and required light for induction. Moreover, pOsETHE1 activity was induced under various abiotic stresses such as heat, salinity and oxidative stress, suggesting a potential role of OsETHE1 in stress response.


Asunto(s)
Calcio/metabolismo , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Estrés Fisiológico , Secuencia de Aminoácidos , Dioxigenasas/metabolismo , Genes Reporteros , Luz , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Cebollas/citología , Cebollas/genética , Cebollas/fisiología , Especificidad de Órganos , Oryza/efectos de los fármacos , Oryza/genética , Oryza/efectos de la radiación , Filogenia , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión , Alineación de Secuencia
17.
Plant Biol (Stuttg) ; 16(2): 512-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24400835

RESUMEN

The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4 ) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH4 emission measured at surface level in all species. Here, we investigated the potential of the leaf surface wax itself as a source of UV radiation-induced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two-step process initiated by a photolytic rearrangement reaction of the major component followed by an α-cleavage of the generated ketone.


Asunto(s)
Metano/biosíntesis , Oxígeno/metabolismo , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Rayos Ultravioleta , Ceras/metabolismo , Atmósfera , Pectinas/metabolismo , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Plantas/efectos de la radiación
18.
J Sci Food Agric ; 94(7): 1349-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24114525

RESUMEN

BACKGROUND: Heat pretreatment is considered the first step in grain milling. This study therefore evaluated microwave and micronization heat treatments in improving the dehulling characteristics, phenolic composition and antioxidant and α-amylase activities of bean cultivars from three market classes. RESULTS: Heat treatments improved dehulling characteristics (hull yield, rate coefficient and reduced abrasive hardness index) depending on bean cultivar, whereas treatment effects increased with dehulling time. Micronization increased minor phenolic components (tartaric esters, flavonols and anthocyanins) of all beans but had variable effects on total phenolic content depending on market class. Microwave treatment increased α-amylase inhibitor concentration, activity and potency, which were strongly correlated (r² = 0.71, P < 0.0001) with the flavonol content of beans. Heat treatment had variable effects on the phenolic composition of bean hulls obtained by abrasive dehulling without significantly altering the antioxidant activity of black and pinto bean hulls. Principal component analysis on 22 constituents analyzed in this study demonstrated the differences in dehulling characteristics and phenolic components of beans and hulls as major factors in segregating the beneficial heat treatment effects. CONCLUSION: Heat treatment may be useful in developing novel dietary fibers from beans with variable composition and bioactivity with a considerable range of applications as functional food ingredients.


Asunto(s)
Manipulación de Alimentos , Alimentos en Conserva/análisis , Alimentos Funcionales/análisis , Residuos Industriales/análisis , Phaseolus/química , Epidermis de la Planta/química , Semillas/química , Alberta , Antioxidantes/análisis , Antioxidantes/economía , Antioxidantes/efectos de la radiación , Alimentos Fortificados/análisis , Alimentos Fortificados/economía , Alimentos en Conserva/efectos de la radiación , Industria de Procesamiento de Alimentos/economía , Alimentos Funcionales/efectos de la radiación , Calor , Residuos Industriales/economía , Rayos Infrarrojos , Fenómenos Mecánicos , Microondas , Phaseolus/crecimiento & desarrollo , Phaseolus/metabolismo , Phaseolus/efectos de la radiación , Fenoles/análisis , Fenoles/economía , Fenoles/efectos de la radiación , Pigmentación/efectos de la radiación , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/efectos de la radiación , Lectinas de Plantas/metabolismo , Lectinas de Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efectos de la radiación , Saskatchewan , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/efectos de la radiación , Washingtón , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/efectos de la radiación
19.
Plant Cell Environ ; 37(4): 961-77, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24117455

RESUMEN

The blue light photoreceptors cryptochromes are ubiquitous in higher plants and are vital for regulating plant growth and development. In spite of being involved in controlling agronomically important traits like plant height and flowering time, cryptochromes have not been extensively characterized from agriculturally important crops. Here we show that overexpression of CRY1 from Brassica napus (BnCRY1), an oilseed crop, results in short-statured Brassica transgenics, likely to be less prone to wind and water lodging. The overexpression of BnCRY1 accentuates the inhibition of cell elongation in hypocotyls of transgenic seedlings. The analysis of hypocotyl growth inhibition and anthocyanin accumulation responses in BnCRY1 overexpressors substantiates that regulation of seedling photomorphogenesis by cry1 is dependent on light intensity. This study highlights that the photoactivated cry1 acts through coordinated induction and suppression of specific downstream genes involved in phytohormone synthesis or signalling, and those involved in cell wall modification, during de-etiolation of Brassica seedlings. The microarray-based transcriptome profiling also suggests that the overexpression of BnCRY1 alters abiotic/biotic stress signalling pathways; the transgenic seedlings were apparently oversensitive to abscisic acid (ABA) and mannitol.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/genética , Ácido Abscísico/farmacología , Antocianinas/metabolismo , Brassica napus/efectos de los fármacos , Brassica napus/efectos de la radiación , Pared Celular/genética , Pared Celular/efectos de la radiación , Cotiledón/efectos de los fármacos , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de la radiación , Criptocromos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Datos de Secuencia Molecular , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/efectos de la radiación , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación
20.
Plant Biol (Stuttg) ; 16 Suppl 1: 187-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24176096

RESUMEN

The cultivation of higher plants in Space involves not only the development of new agro-technologies for the design of ecologically closed Space greenhouses, but also understanding of the effects of Space factors on biological systems. Among Space factors, ionising radiation is one of the main constraints to the growth of organisms. In this paper, we analyse the effect of low-LET radiation on leaf histology and cytology in Phaseolus vulgaris L. plants subjected to increasing doses of X-rays (0.3, 10, 50, 100 Gy). Leaves irradiated at tissue maturity were compared with not-irradiated controls. Semi-thin sections of leaves were analysed through light and epi-fluorescence microscopy. Digital image analysis was applied to quantify anatomical parameters, with a specific focus on the occurrence of signs of structural damage as well as alterations at subcellular level, such as the accumulation of phenolic compounds and chloroplast size. Results showed that even at high levels of radiation, general anatomical structure was not severely perturbed. Slight changes in mesophyll density and cell enlargement were detected at the highest level of radiation. However, at 100 Gy, higher levels of phenolic compounds accumulated along chloroplast membranes: this accompanied an increase in number of chloroplasts. The reduced content of chlorophylls at high levels of radiation was associated with reduced size of the chloroplasts. All data are discussed in terms of the possible role of cellular modifications in the maintenance of high radioresistance and photosynthetic efficiency.


Asunto(s)
Phaseolus/anatomía & histología , Phaseolus/efectos de la radiación , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Análisis de Varianza , Clorofila/metabolismo , Clorofila A , Cloroplastos/metabolismo , Células del Mesófilo/citología , Microscopía Fluorescente , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/citología , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA