Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
Methods Mol Biol ; 2805: 113-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008177

RESUMEN

The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.


Asunto(s)
Bioimpresión , Colágeno , Células Epiteliales , Matriz Extracelular , Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos , Bioimpresión/métodos , Hidrogeles/química , Colágeno/química , Colágeno/metabolismo , Ingeniería de Tejidos/métodos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Animales , Morfogénesis , Humanos , Proteoglicanos/química , Proteoglicanos/metabolismo , Andamios del Tejido/química , Laminina/química , Combinación de Medicamentos , Perros , Epitelio/metabolismo , Epitelio/crecimiento & desarrollo
2.
ACS Biomater Sci Eng ; 10(8): 4865-4877, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39007451

RESUMEN

The mechanical cue of fiber alignment plays a key role in the development of various tissues in the body. The ability to study the effect of these stimuli in vitro has been limited previously. Here, we present a microfluidic device capable of intrinsically generating aligned fibers using the microchannel geometry. The device also features tunable interstitial fluid flow and the ability to form a morphogen gradient. These aspects allow for the modeling of complex tissues and to differentiate cell response to different stimuli. To demonstrate the abilities of our device, we incorporated luminal epithelial cysts into our device and induced growth factor stimulation. We found the mechanical cue of fiber alignment to play a dominant role in cell elongation and the ability to form protrusions was dependent on cadherin-3. Together, this work serves as a springboard for future potential with these devices to answer questions in developmental biology and complex diseases such as cancers.


Asunto(s)
Morfogénesis , Animales , Quimiocinas/metabolismo , Microfluídica/métodos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Cadherinas/metabolismo , Dispositivos Laboratorio en un Chip , Epitelio/metabolismo , Epitelio/crecimiento & desarrollo , Perros , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células de Riñón Canino Madin Darby , Modelos Biológicos
3.
Stem Cell Rev Rep ; 20(5): 1184-1199, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38498295

RESUMEN

Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.


Asunto(s)
Ameloblastos , Bioimpresión , Organoides , Regeneración , Humanos , Organoides/citología , Organoides/metabolismo , Ameloblastos/metabolismo , Ameloblastos/citología , Diente/citología , Diente/crecimiento & desarrollo , Animales , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ingeniería de Tejidos/métodos , Epitelio/metabolismo , Epitelio/crecimiento & desarrollo , Impresión Tridimensional , Modelos Biológicos
5.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37930352

RESUMEN

Although mutations in the SCRIB gene lead to multiple morphological organ defects in vertebrates, the molecular pathway linking SCRIB to organ shape anomalies remains elusive. Here, we study the impact of SCRIB-targeted gene mutations during the formation of the gut epithelium in an organ-on-chip model. We show that SCRIB KO gut-like epithelia are flatter with reduced exposed surface area. Cell differentiation on filters further shows that SCRIB plays a critical role in the control of apical cell shape, as well as in the basoapical polarization of myosin light chain localization and activity. Finally, we show that SCRIB serves as a molecular scaffold for SHROOM2/4 and ROCK1 and identify an evolutionary conserved SHROOM binding site in the SCRIB carboxy-terminal that is required for SCRIB function in the control of apical cell shape. Our results demonstrate that SCRIB plays a key role in epithelial morphogenesis by controlling the epithelial apical contractility during cell differentiation.


Asunto(s)
Diferenciación Celular , Epitelio , Proteínas de la Membrana , Animales , Sitios de Unión , Evolución Biológica , Forma de la Célula , Epitelio/crecimiento & desarrollo , Sistemas Microfisiológicos , Proteínas de la Membrana/fisiología , Morfogénesis
6.
Anim Reprod Sci ; 249: 107198, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36791599

RESUMEN

The soft-shelled turtle, Pelodiscus sinensis, is an important economic aquaculture species. Its reproduction exhibits seasonality; however, there is a lack of systematic studies focused on sperm maturation and epididymal storage. The testes and epididymides of P. sinensis were sampled from March to December. The seasonal reproduction and maturation of the spermatozoa were examined by anatomy, hematoxylin and eosin staining, AB-PAS staining, and immunohistochemistry. Spermatogenesis exhibited obvious seasonality in P. sinensis. It was found that the spermatogenic epithelium was most active during June to September, whereas the diameter of the epididymal tubules was smallest during June to October. As key enzymes of ATP metabolism, creatine kinases were highly expressed in the epididymal tubule epithelium during the breeding season, which may be important for the regulation of sperm maturation. In addition, the epididymal tubule epithelium changed with the season in June to September, the epididymal tubule epithelium proliferated to form villous structures, and secreted a large number of glycoproteins, which may be related to the rapid maturation of sperm during the breeding season. In conclusion, this study provided insights into the spermatogenesis of P. sinensis through histological analysis and enriched our understanding of reproduction in reptiles.


Asunto(s)
Creatina Quinasa , Epidídimo , Espermatogénesis , Tortugas , Estaciones del Año , Masculino , Animales , Epidídimo/citología , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , Expresión Génica/fisiología , Epitelio/anatomía & histología , Epitelio/crecimiento & desarrollo
7.
Nat Commun ; 13(1): 941, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177595

RESUMEN

During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Epitelio/crecimiento & desarrollo , Morfogénesis , Proteínas Supresoras de Tumor/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CACO-2 , Polaridad Celular , Perros , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Epitelio/metabolismo , Femenino , Gastrulación , Estratos Germinativos , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Transgénicos , Mutación , Línea Primitiva , Receptores de Neuropéptido Y/metabolismo , Estrés Mecánico , Uniones Estrechas/metabolismo , Proteínas Supresoras de Tumor/genética
8.
Cell Rep ; 38(7): 110379, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172130

RESUMEN

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Asunto(s)
Epitelio/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Membrana Serosa/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Alginatos/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colágeno/farmacología , Combinación de Medicamentos , Epitelio/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Humanos , Intestinos/ultraestructura , Laminina/farmacología , Músculo Liso/citología , Organoides/efectos de los fármacos , Organoides/ultraestructura , Proteoglicanos/farmacología , Membrana Serosa/efectos de los fármacos , Membrana Serosa/ultraestructura , Transducción de Señal/efectos de los fármacos , Suspensiones , Proteínas Wnt/metabolismo
9.
Cell Rep ; 38(7): 110375, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172155

RESUMEN

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Asunto(s)
Epitelio , Glicoproteínas , Integrina beta1 , Glándulas Mamarias Animales , Morfogénesis , Transducción de Señal , Animales , Movimiento Celular/genética , Polaridad Celular , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Epitelio/crecimiento & desarrollo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones Transgénicos , Modelos Biológicos , Unión Proteica
10.
Cells ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943975

RESUMEN

Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.


Asunto(s)
Pulmón/crecimiento & desarrollo , Células Madre Mesenquimatosas/metabolismo , Organogénesis/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Remodelación de las Vías Aéreas (Respiratorias)/genética , Diferenciación Celular/genética , Transición Epitelial-Mesenquimal/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Epitelio/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/citología , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/crecimiento & desarrollo , Mucosa Respiratoria/metabolismo
11.
Bull Exp Biol Med ; 172(1): 100-104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34787779

RESUMEN

We studied the dynamics of morphological changes in the operated segment of the uterine horn of Sprague-Dawley rats during the first 2 weeks of the wound-healing process after a full-thickness surgical incision with regard to the estrous cycle phase. Morphometric parameters of injured uterine right horn were compared with those in the intact left horn of the same animal as a control of changes determined by the hormonal background. It was found that the uterine epithelium in the focus of injury was restored as soon as on day 2 after surgery under the influence of estrous cycle hormones. By day 4, the wound space was completely filled with the endometrial tissue on the side of the uterine lumen and coved by the attached adipose tissue of the mesentery on the side of the abdominal cavity. The thickness of the uterine wall and the uterine lumen differed most strongly between the operated and intact uterine horns during the first 3 days and on day 6 after surgery. The size of the healing area increased during the first three days and reached the peak value by day 3, but then decreased to minimum by day 6.


Asunto(s)
Endometrio/crecimiento & desarrollo , Ciclo Estral/fisiología , Herida Quirúrgica/patología , Útero/cirugía , Cicatrización de Heridas/fisiología , Animales , Epitelio/crecimiento & desarrollo , Femenino , Ratas , Ratas Sprague-Dawley
12.
J Photochem Photobiol B ; 225: 112332, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653929

RESUMEN

Skin wounds represent a burden in healthcare. Our aim was to investigate for the first time the effects of defocused high-power diode laser (DHPL) on skin healing in an animal experimental model and compare it with gold standard low-level laser therapy. Male Wistar rats were divided into 5 groups: Negative control; Sham; 0.1 W laser (L0.1 W); DHPL Dual 1 W (DHPLD1 W); and DHPL Dual 2 W (DHPLD2 W). Rats were euthanized on days 3, 5, 10, 14 and 21. Clinical, morphological, PicroSirus, oxidative stress (MDA, SOD and GSH) and cytokines (IL-1ß, IL-10 and TNF-α) analyses were performed. A faster clinical repair was observed in all laser groups at D10 and D14. DHPLD1 W exhibited lower inflammation and better reepithelization compared to other groups at D10. DHPL protocols modulated oxidative stress by decreasing MDA and increasing SOD and GSH. Collagen maturation was triggered by all protocols tested and L0.1 W modulated cytokines release (IL-1ß and TNF-α) at D3. In conclusion, DHPL, especially DHPL1 W protocol, accelerated skin healing by triggering reepithelization and collagen maturation and modulating inflammation and oxidative stress.


Asunto(s)
Colágeno/metabolismo , Terapia por Láser/métodos , Piel/fisiopatología , Cicatrización de Heridas/efectos de la radiación , Animales , Citocinas/metabolismo , Epitelio/crecimiento & desarrollo , Epitelio/efectos de la radiación , Inflamación/prevención & control , Masculino , Oxidación-Reducción , Estrés Oxidativo/efectos de la radiación , Ratas , Ratas Wistar , Piel/metabolismo
13.
Nat Commun ; 12(1): 4697, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349123

RESUMEN

Polarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


Asunto(s)
Antígenos CD13/metabolismo , Polaridad Celular , Células Epiteliales/citología , Epitelio/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD13/química , Antígenos CD13/genética , Células CACO-2 , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Células Epiteliales/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Proteínas de Unión al GTP rab/metabolismo
14.
Genes Genomics ; 43(9): 1087-1094, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34302633

RESUMEN

BACKGROUND: In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE: The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS: In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS: We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS: Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.


Asunto(s)
Diente Molar/crecimiento & desarrollo , Odontogénesis/genética , Germen Dentario/crecimiento & desarrollo , Transcriptoma/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Estudios de Asociación Genética , Proteínas de Homeodominio/genética , Humanos , Proteínas con Homeodominio LIM/genética , Linfocinas/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Diente Molar/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , RNA-Seq , Proteínas Represoras/genética , Semaforina-3A/genética , Germen Dentario/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética
15.
Commun Biol ; 4(1): 757, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145387

RESUMEN

Although impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MßCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.


Asunto(s)
Caveolina 1/genética , Úlcera del Pie/patología , Proteínas Activadoras de GTPasa/genética , Queratinocitos/metabolismo , Proteínas Represoras/genética , Úlcera Varicosa/patología , Cicatrización de Heridas/fisiología , Animales , Caveolina 1/metabolismo , Línea Celular , Movimiento Celular/genética , Citoesqueleto/patología , Pie Diabético/patología , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Epitelio/crecimiento & desarrollo , Proteínas Activadoras de GTPasa/metabolismo , Glucocorticoides/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/metabolismo , Cicatrización de Heridas/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34087104

RESUMEN

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Asunto(s)
Transformación Celular Neoplásica , Epitelio/crecimiento & desarrollo , Receptores de Hialuranos/metabolismo , Colágenos no Fibrilares/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Perros , Ferroptosis , Humanos , Células de Riñón Canino Madin Darby , Potencial de la Membrana Mitocondrial , Ratones , Especies Reactivas de Oxígeno
17.
Dev Cell ; 56(12): 1700-1711.e8, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081909

RESUMEN

What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.


Asunto(s)
Caspasas/genética , Drosophila melanogaster/genética , Células Epiteliales/ultraestructura , Epitelio/crecimiento & desarrollo , Animales , Apoptosis/genética , Muerte Celular/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Células Epiteliales/citología , Epitelio/ultraestructura , Sistema de Señalización de MAP Quinasas/genética , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/ultraestructura , Análisis de la Célula Individual
18.
Acta Histochem ; 123(5): 151737, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34116359

RESUMEN

Early weaning is usually applied to improve the reproductive efficiency of sheep in mutton production, while the development of rumen is of vital importance for sheep weaning age. Translationally controlled tumor protein (TCTP) is a highly conserved protein which participates in multiple tissue and organ development. Thus, we hypothesized that TCTP was involved in sheep rumen development. Histological analyses of sheep rumen epithelium showed that the epithelium formed tough shaped papillae without growing from birth to day 15 of age, after which it rapidly developed to functional epithelia on day 45 of age. We then found TCTP expressed in stratum basale, stratum spinosum and stratum granulosum of rumen epithelium. TCTP protein expression remained at a relative low level from day 0 to day 15 of age, it then significantly increased on day 30 (p < 0.05) and gradually decreased until day 60. Furthermore, to explore the role of TCTP in sheep rumen and its regulation, we found the ratio of Ki67 positive cell in stratum basale cells followed the similar pattern as the expression of TCTP. We also found the ratio of acetate:propionate in rumen fluid decreased from day 30 to day 60 of age (p < 0.05). To conclude, our data indicated that TCTP participated in rumen papillae growth by promoting rumen stratum basale cell proliferation.


Asunto(s)
Epitelio/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Rumen/crecimiento & desarrollo , Proteína Tumoral Controlada Traslacionalmente 1/metabolismo , Alimentación Animal/análisis , Animales , Proliferación Celular , Células Epiteliales/metabolismo , Antígeno Ki-67/biosíntesis , Masculino , Biosíntesis de Proteínas , Ovinos , Factores de Tiempo , Destete
19.
J Biol Chem ; 297(1): 100848, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34058200

RESUMEN

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, ß-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP-ß-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo-YAP signaling pathway for rapid reparative response after tissue injury.


Asunto(s)
Proteínas de Ciclo Celular/genética , Colitis/genética , Neurofibromina 2/genética , Factores de Transcripción/genética , beta Catenina/genética , Proteínas de Unión al GTP rab/genética , Uniones Adherentes/genética , Animales , Células CACO-2 , Proliferación Celular/genética , Colitis/inducido químicamente , Colitis/patología , Colon/crecimiento & desarrollo , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Epitelio/crecimiento & desarrollo , Epitelio/patología , Humanos , Ratones , Uniones Estrechas/genética , alfa Catenina/genética
20.
Curr Opin Genet Dev ; 69: 122-128, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33848957

RESUMEN

The elaborate ornaments and weapons of sexual selection, such as the vast array of horns observed in scarab beetles, are some of the most striking outcomes of evolution. How these novel traits have arisen, develop, and respond to condition is governed by a complex suite of interactions that require coordination between the environment, whole-animal signals, cell-cell signals, and within-cell signals. Endocrine factors, developmental patterning genes, and sex-specific gene expression have been shown to regulate beetle horn size, shape, and location, yet no overarching mechanism of horn shape has been described. Recent advances in microscopy and computational analyses combined with a functional genetic approach have revealed that patterning genes combined with intricate epithelial folding and movement are responsible for the final shape of a beetle head horn.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/genética , Escarabajos/genética , Cuernos/anatomía & histología , Animales , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Epitelio/anatomía & histología , Epitelio/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Cuernos/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA