Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.145
Filtrar
1.
Immunity ; 57(7): 1665-1680.e7, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38772365

RESUMEN

Inflammatory epithelial diseases are spurred by the concomitant dysregulation of immune and epithelial cells. How these two dysregulated cellular compartments simultaneously sustain their heightened metabolic demands is unclear. Single-cell and spatial transcriptomics (ST), along with immunofluorescence, revealed that hypoxia-inducible factor 1α (HIF1α), downstream of IL-17 signaling, drove psoriatic epithelial remodeling. Blocking HIF1α in human psoriatic lesions ex vivo impaired glycolysis and phenocopied anti-IL-17 therapy. In a murine model of skin inflammation, epidermal-specific loss of HIF1α or its target gene, glucose transporter 1, ameliorated epidermal, immune, vascular, and neuronal pathology. Mechanistically, glycolysis autonomously fueled epithelial pathology and enhanced lactate production, which augmented the γδ T17 cell response. RORγt-driven genetic deletion or pharmacological inhibition of either lactate-producing enzymes or lactate transporters attenuated epithelial pathology and IL-17A expression in vivo. Our findings identify a metabolic hierarchy between epithelial and immune compartments and the consequent coordination of metabolic processes that sustain inflammatory disease.


Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-17 , Animales , Humanos , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Piel/inmunología , Piel/patología , Piel/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Psoriasis/inmunología , Psoriasis/metabolismo , Epitelio/inmunología , Epitelio/metabolismo , Ratones Noqueados , Transducción de Señal/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Modelos Animales de Enfermedad , Ácido Láctico/metabolismo , Enfermedad Crónica , Inflamación/inmunología , Ratones Endogámicos C57BL
2.
J Med Invest ; 71(1.2): 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735722

RESUMEN

The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.


Asunto(s)
Envejecimiento , Timo , Timo/inmunología , Timo/crecimiento & desarrollo , Humanos , Envejecimiento/fisiología , Envejecimiento/inmunología , Animales , Células Epiteliales/fisiología , Epitelio/inmunología , Linfocitos T/inmunología
3.
FEBS Lett ; 598(11): 1335-1353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485451

RESUMEN

Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.


Asunto(s)
Inmunidad Innata , Inflamasomas , Inflamasomas/inmunología , Inflamasomas/metabolismo , Humanos , Animales , Epitelio/inmunología , Epitelio/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Homeostasis/inmunología
4.
Front Immunol ; 14: 1133886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033941

RESUMEN

Introduction: Human immunodeficiency virus type 1 (HIV) transmission mostly occurs through the genital and intestinal mucosae. Although HIV-1 transmission has been extensively investigated, gaps remain in understanding the initial steps of HIV entry through the colonic mucosa. We previously showed that HIV can selectively trigger mononuclear phagocytes (MNP) to migrate within colonic epithelial cells to sample virions. Mucosal exposure to human seminal plasma (HSP), rich in pro- and anti-inflammatory cytokines, chemokines and growth factors, may as well induce alterations of the colonic mucosa and recruit immune cells, hence, affecting pathogen sampling and transmission. Methods: Here, we studied the role of HSP on the paracellular intestinal permeability by analyzing the distribution of two proteins known to play a key role in controlling the intestinal barrier integrity, namely the tight junctions-associated junctional adhesion molecule (JAM-A) and the adherents junction associated protein E-cadherin (E-CAD), by immunofluorescence and confocal microscopy. Also, we evaluated if HSP promotes the recruitment of MNP cells, specifically, the CD11c and CD64 positive MNPs, to the apical side of the human colonic mucosa. At this scope, HSP of HIV-infected and uninfected individuals with known fertility status was tested for cytokines, chemokines and growth factors concentration and used in an ex vivo polarized colonic tissue culture system to mimic as closely as possible the physiological process. Results: HSP showed statistically significant differences in cytokines and chemokines concentrations between the three groups of donors, i.e. HIV infected, or uninfected fertile or randomly identified. Nevertheless, we showed that in the ex vivo tissue culture HSP in general, neither affected the morphological structure of the colonic mucosa nor modulated the paracellular intestinal permeability. Interestingly, CD11c+ MNP cells migrated to the apical surface of the colonic epithelium regardless, if incubated with HIV-infected or -uninfected HSPs, while CD64+ MNP cells, did not change their distribution within the colonic mucosa. Discussion: In conclusion, even if HSP did not perturb the integrity of the human colonic mucosa, it affected the migration of a specific subset of MNPs that express CD11c towards the apical side of the colonic mucosa, which in turn may be involved in pathogen sampling.


Asunto(s)
Movimiento Celular , Colon , Infecciones por VIH , Mucosa Intestinal , Monocitos , Semen , Humanos , Cadherinas/inmunología , Citocinas/inmunología , Epitelio/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Moléculas de Adhesión de Unión , Fagocitos/inmunología , Semen/inmunología , Monocitos/inmunología , Antígeno CD11c/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/virología , Colon/inmunología , Colon/virología , VIH-1/inmunología , Movimiento Celular/inmunología , Internalización del Virus , Interacciones Huésped-Patógeno/inmunología
5.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862222

RESUMEN

Although published studies have demonstrated that IFN-ε has a crucial role in regulating protective immunity in the mouse female reproductive tract, expression and regulation of IFN-ε in the human female reproductive tract (hFRT) have not been characterized to our knowledge. We obtained hFRT samples from a well-characterized cohort of women to enable us to comprehensively assess ex vivo IFN-ε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFN-ε was uniquely, selectively, and constitutively expressed in the hFRT epithelium. It had distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There was cyclical variation of IFN-ε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Because we showed IFN-ε stimulated important protective IFN-regulated genes in FRT epithelium, this characterization is a key element in understanding the mechanisms of hormonal control of mucosal immunity.


Asunto(s)
Endometrio , Inmunidad Innata , Interferones , Animales , Endometrio/inmunología , Epitelio/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Interferones/genética , Interferones/metabolismo , Ratones , Progesterona/metabolismo , Regiones Promotoras Genéticas , Receptores de Progesterona/metabolismo
6.
Science ; 376(6596): 940-945, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617415

RESUMEN

Human skin forms a protective barrier against the external environment and is our first line of defense against toxic, solar, and pathogenic insults. Our skin also defines our outward appearance, protects our internal tissues and organs, acts as a sensory interface, and prevents dehydration. Crucial to the skin's barrier function is the colonizing microbiota, which provides protection against pathogens, tunes immune responses, and fortifies the epithelium. Here we highlight recent advances in our understanding of how the microbiota mediates multiple facets of skin barrier function. We discuss recent insights into pathological host-microbiota interactions and implications for disorders of the skin and distant organs. Finally, we examine how microbiota-based mechanisms can be targeted to prevent or manage skin disorders and impaired wound healing.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Piel , Epitelio/inmunología , Epitelio/microbiología , Folículo Piloso/inmunología , Folículo Piloso/microbiología , Interacciones Microbiota-Huesped/inmunología , Humanos , Piel/inmunología , Piel/microbiología , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/terapia , Cicatrización de Heridas/inmunología
7.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163192

RESUMEN

Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and ß-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and ß-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and ß-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, ß-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.


Asunto(s)
Aloinjertos/metabolismo , Rechazo de Injerto/inmunología , Interleucina-10/metabolismo , Animales , Células Endoteliales/inmunología , Células Epiteliales/inmunología , Epitelio/inmunología , Supervivencia de Injerto/fisiología , Tolerancia Inmunológica , Terapia de Inmunosupresión , Interleucina-10/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microvasos/inmunología , Microvasos/fisiología , Linfocitos T Reguladores/inmunología , Trasplante Homólogo/métodos
9.
Biomolecules ; 11(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944487

RESUMEN

Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.


Asunto(s)
Citocinas/metabolismo , Dermatitis Atópica/inmunología , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Psoriasis/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Epitelio/efectos de los fármacos , Epitelio/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Estrés Oxidativo/efectos de los fármacos , Psoriasis/tratamiento farmacológico
10.
Sci Immunol ; 6(65): eabl5053, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767455

RESUMEN

The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor­related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium­the other principal Aire-expressing population and a key regulator of central tolerance­identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.


Asunto(s)
Epitelio/inmunología , Análisis de la Célula Individual , Timo/inmunología , Factores de Transcripción/inmunología , Animales , Tolerancia Inmunológica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Timo/citología , Proteína AIRE
11.
Front Immunol ; 12: 763026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795673

RESUMEN

Hereditary gingival fibromatosis [HGF, (MIM 135300)], a rare benign oral condition, has several adverse consequences such as aesthetic changes, malocclusion, speech impediments, and abnormal dentition. However, relatively few studies have addressed the beneficial effects of thick gingival tissues in resisting external stimuli. In this report, we present a unique case of a family affected by HGF that manifests as a 'healthy' gingiva. Human ß-defensins (hBDs) are known to play a pivotal role in the clearance and killing of various microbes, and contribute to maintaining a healthy oral environment, which is currently emerging research area. However, the expression pattern and localisation of hBDs in patients with HGF have not yet been reported. hBD-2 and hBD-3 in the pedigree we collected had relatively elevated expression. High hBD levels in the gingival tissue of patients from the family may be beneficial in protecting oral tissue from external stimuli and promoting periodontal regeneration, but their role and the mechanisms underlying HGF need to be clarified.


Asunto(s)
Fibromatosis Gingival/inmunología , Encía/inmunología , beta-Defensinas/análisis , Adulto , Epitelio/inmunología , Femenino , Humanos
12.
Nature ; 598(7881): 510-514, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646013

RESUMEN

Human epithelial tissues accumulate cancer-driver mutations with age1-9, yet tumour formation remains rare. The positive selection of these mutations suggests that they alter the behaviour and fitness of proliferating cells10-12. Thus, normal adult tissues become a patchwork of mutant clones competing for space and survival, with the fittest clones expanding by eliminating their less competitive neighbours11-14. However, little is known about how such dynamic competition in normal epithelia influences early tumorigenesis. Here we show that the majority of newly formed oesophageal tumours are eliminated through competition with mutant clones in the adjacent normal epithelium. We followed the fate of nascent, microscopic, pre-malignant tumours in a mouse model of oesophageal carcinogenesis and found that most were rapidly lost with no indication of tumour cell death, decreased proliferation or an anti-tumour immune response. However, deep sequencing of ten-day-old and one-year-old tumours showed evidence of selection on the surviving neoplasms. Induction of highly competitive clones in transgenic mice increased early tumour removal, whereas pharmacological inhibition of clonal competition reduced tumour loss. These results support a model in which survival of early neoplasms depends on their competitive fitness relative to that of mutant clones in the surrounding normal tissue. Mutant clones in normal epithelium have an unexpected anti-tumorigenic role in purging early tumours through cell competition, thereby preserving tissue integrity.


Asunto(s)
Competencia Celular , Proliferación Celular , Células Clonales/citología , Células Clonales/metabolismo , Células Epiteliales/citología , Neoplasias Esofágicas/patología , Mutación , Animales , Carcinogénesis/inmunología , Muerte Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Epitelio/inmunología , Neoplasias Esofágicas/inmunología , Femenino , Masculino , Ratones , Factores de Tiempo
13.
Cells ; 10(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34685744

RESUMEN

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Asunto(s)
COVID-19/inmunología , Epitelio/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Pulmón/inmunología , Alarminas , Animales , Senescencia Celular , Técnicas de Cocultivo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Inmunidad , Inflamación/metabolismo , Ligandos , Necroptosis , Necrosis/patología , Enfermedad Pulmonar Obstructiva Crónica , SARS-CoV-2 , Transducción de Señal
14.
Nat Immunol ; 22(10): 1210-1217, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34545250

RESUMEN

When helper T (TH) cell polarization was initially described three decades ago, the TH cell universe grew dramatically. New subsets were described based on their expression of few specific cytokines. Beyond TH1 and TH2 cells, this led to the coining of various TH17 and regulatory (Treg) cell subsets as well as TH22, TH25, follicular helper (TFH), TH3, TH5 and TH9 cells. High-dimensional single-cell analysis revealed that a categorization of TH cells into a single-cytokine-based nomenclature fails to capture the complexity and diversity of TH cells. Similar to the simple nomenclature used to describe innate lymphoid cells (ILCs), we propose that TH cell polarization should be categorized in terms of the help they provide to phagocytes (type 1), to B cells, eosinophils and mast cells (type 2) and to non-immune tissue cells, including the stroma and epithelium (type 3). Studying TH cells based on their helper function and the cells they help, rather than phenotypic features such as individual analyzed cytokines or transcription factors, better captures TH cell plasticity and conversion as well as the breadth of immune responses in vivo.


Asunto(s)
Citocinas/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/inmunología , Plasticidad de la Célula/inmunología , Eosinófilos/inmunología , Epitelio/inmunología , Humanos , Inmunidad Innata/inmunología , Linfocitos/inmunología , Fagocitos/inmunología
15.
Front Immunol ; 12: 660524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262561

RESUMEN

Vaginal mucosal surfaces naturally offer some protection against sexually transmitted infections (STIs) including Human Immunodeficiency Virus-1, however topical preventative medications or vaccine designed to boost local immune responses can further enhance this protection. We previously developed a novel mucosal vaccine strategy using viral vectors integrated into mouse dermal epithelium to induce virus-specific humoral and cellular immune responses at the site of exposure. Since vaccine integration occurs at the site of cell replication (basal layer 100-400 micrometers below the surface), temporal epithelial thinning during vaccine application, confirmed with high resolution imaging, is desirable. In this study, strategies for vaginal mucosal thinning were evaluated noninvasively using optical coherence tomography (OCT) to map reproductive tract epithelial thickness (ET) in macaques to optimize basal layer access in preparation for future effective intravaginal mucosal vaccination studies. Twelve adolescent female rhesus macaques (5-7kg) were randomly assigned to interventions to induce vaginal mucosal thinning, including cytobrush mechanical abrasion, the chemical surfactant spermicide nonoxynol-9 (N9), the hormonal contraceptive depomedroxyprogesterone acetate (DMPA), or no intervention. Macaques were evaluated at baseline and after interventions using colposcopy, vaginal biopsies, and OCT imaging, which allowed for real-time in vivo visualization and measurement of ET of the mid-vagina, fornices, and cervix. P value ≤0.05 was considered significant. Colposcopy findings included pink, rugated tissue with variable degrees of white-tipped, thickened epithelium. Baseline ET of the fornices was thinner than the cervix and vagina (p<0.05), and mensing macaques had thinner ET at all sites (p<0.001). ET was decreased 1 month after DMPA (p<0.05) in all sites, immediately after mechanical abrasion (p<0.05) in the fornix and cervix, and after two doses of 4% N9 (1.25ml) applied over 14 hrs in the fornix only (p<0.001). Histological assessment of biopsied samples confirmed OCT findings. In summary, OCT imaging allowed for real time assessment of macaque vaginal ET. While varying degrees of thinning were observed after the interventions, limitations with each were noted. ET decreased naturally during menses, which may provide an ideal opportunity for accessing the targeted vaginal mucosal basal layers to achieve the optimum epithelial thickness for intravaginal mucosal vaccination.


Asunto(s)
Cuello del Útero/citología , Epitelio/inmunología , Membrana Mucosa/anatomía & histología , Membrana Mucosa/inmunología , Tomografía de Coherencia Óptica/métodos , Vacunas/administración & dosificación , Vagina/citología , Animales , Sistemas de Liberación de Medicamentos , Células Epiteliales , Epitelio/efectos de los fármacos , Femenino , Macaca mulatta , Ratones , Membrana Mucosa/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/fisiología , Vacunas/inmunología , Vagina/inmunología
16.
Front Immunol ; 12: 705232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295340

RESUMEN

Increasing evidence supports that N6-methyladenosine (m6A) mRNA modification may play an important role in regulating immune responses. Intestinal epithelial cells orchestrate gastrointestinal mucosal innate defense to microbial infection, but underlying mechanisms are still not fully understood. In this study, we present data demonstrating significant alterations in the topology of host m6A mRNA methylome in intestinal epithelial cells following infection by Cryptosporidium parvum, a coccidian parasite that infects the gastrointestinal epithelium and causes a self-limited disease in immunocompetent individuals but a life-threatening diarrheal disease in AIDS patients. Altered m6A methylation in mRNAs in intestinal epithelial cells following C. parvum infection is associated with downregulation of alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 and the fat mass and obesity-associated protein with the involvement of NF-кB signaling. Functionally, m6A methylation statuses influence intestinal epithelial innate defense against C. parvum infection. Specifically, expression levels of immune-related genes, such as the immunity-related GTPase family M member 2 and interferon gamma induced GTPase, are increased in infected cells with a decreased m6A mRNA methylation. Our data support that intestinal epithelial cells display significant alterations in the topology of their m6A mRNA methylome in response to C. parvum infection with the involvement of activation of the NF-кB signaling pathway, a process that modulates expression of specific immune-related genes and contributes to fine regulation of epithelial antimicrobial defense.


Asunto(s)
Adenosina/análogos & derivados , Criptosporidiosis/inmunología , Cryptosporidium parvum/inmunología , Epitelio/inmunología , Inmunidad Innata , Mucosa Intestinal/inmunología , Procesamiento Postranscripcional del ARN , ARN Mensajero/inmunología , Adenosina/fisiología , Desmetilasa de ARN, Homólogo 5 de AlkB/antagonistas & inhibidores , Desmetilasa de ARN, Homólogo 5 de AlkB/biosíntesis , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/biosíntesis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Sistemas CRISPR-Cas , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/biosíntesis , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica/inmunología , Humanos , Mucosa Intestinal/citología , Metilación , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
17.
PLoS Negl Trop Dis ; 15(7): e0009508, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237073

RESUMEN

The complement system is activated in tuberculous pleural effusion (TPE), with increased levels of the anaphylatoxins stimulating pleural mesothelial cells (PMCs) to secrete chemokines, which recruit nonclassical monocytes to the pleural cavity. The differentiation and recruitment of naive CD4+ T cells are induced by pleural cytokines and PMC-produced chemokines in TPE. However, it is unclear whether anaphylatoxins orchestrate CD4+ T cell response via interactions between PMCs and monocytes in TPE. In this study, CD16+ and CD16- monocytes isolated from TPE patients were cocultured with PMCs pretreated with anaphylatoxins. After removing the PMCs, the conditioned monocytes were cocultured with CD4+ T cells. The levels of the cytokines were measured in PMCs and monocyte subsets treated separately with anaphylatoxins. The costimulatory molecules were assessed in conditioned monocyte subsets. Furthermore, CD4+ T cell response was evaluated in different coculture systems. The results indicated that anaphylatoxins induced PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16- monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1ß, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. Collectively, these data indicate that anaphylatoxins play a central role in orchestrating Th17 response mainly via interactions between CD16+ monocytes and PMCs in TPE.


Asunto(s)
Anafilatoxinas/inmunología , Epitelio/inmunología , Monocitos/inmunología , Derrame Pleural/inmunología , Células Th17/inmunología , Tuberculosis/inmunología , Adulto , Linfocitos T CD4-Positivos , Citocinas/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Epitelio/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/fisiología , Derrame Pleural/microbiología , Receptores de IgG/inmunología , Tuberculosis/microbiología
18.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114949

RESUMEN

Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.


Asunto(s)
Sistemas CRISPR-Cas , Interleucinas/genética , Metástasis de la Neoplasia/genética , Neoplasias Ováricas/genética , Receptores de Interleucina/genética , Animales , Línea Celular Tumoral , Epitelio/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Interleucinas/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Cavidad Peritoneal/patología , Receptores de Interleucina/metabolismo , Transducción de Señal , Microambiente Tumoral
19.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34125599

RESUMEN

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Receptores Inmunológicos/inmunología , Receptor Activador Expresado en Células Mieloides 1/inmunología , Útero/inmunología , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Movimiento Celular/inmunología , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/inmunología , Modelos Animales de Enfermedad , Epitelio/inmunología , Epitelio/metabolismo , Epitelio/microbiología , Femenino , Genitales Femeninos/inmunología , Genitales Femeninos/metabolismo , Genitales Femeninos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Oviductos/inmunología , Oviductos/metabolismo , Oviductos/microbiología , Receptores Inmunológicos/metabolismo , Infecciones del Sistema Genital/inmunología , Infecciones del Sistema Genital/metabolismo , Infecciones del Sistema Genital/microbiología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Útero/metabolismo , Útero/microbiología
20.
Front Immunol ; 12: 672808, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012456

RESUMEN

The anti-inflammatory role of extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers is of increasing interest with regard to the search for alternatives to synthetic corticosteroids in the therapy of inflammatory disorders. Despite being very effective in many situations the use of synthetic corticosteroids is often controversial, as exemplified in the treatment of influenza patients and only recently in the current COVID-19 pandemic. Exploring the regulatory capacity of locally produced GCs in balancing immune responses in barrier tissues and in pathogenic disorders that lead to symptoms in multiple organs, could provide new perspectives for drug development. Intestine, skin and lung represent the first contact zones between potentially harmful pathogens or substances and the body, and are therefore important sites of immunoregulatory mechanisms. Here, we review the role of locally produced GCs in the regulation of type 2 immune responses, like asthma, atopic dermatitis and ulcerative colitis, as well as type 1 and type 3 infectious, inflammatory and autoimmune diseases, like influenza infection, psoriasis and Crohn's disease. In particular, we focus on the role of locally produced GCs in the interorgan communication, referred to as gut-skin axis, gut-lung axis or lung-skin axis, all of which are interconnected in the pathogenic crosstalk atopic march.


Asunto(s)
Glucocorticoides/inmunología , Mucosa Intestinal/inmunología , Pulmón/inmunología , Piel/inmunología , Antiinflamatorios , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Epitelio/inmunología , Glucocorticoides/biosíntesis , Humanos , Inflamación , Mucosa Intestinal/patología , Pulmón/patología , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA