Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Biochem Pharmacol ; 227: 116453, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059773

RESUMEN

Spinal echinococcosis is one of the most overlooked zoonotic parasitic diseases worldwide. There is currently no safe and effective treatment to eradicate it, and research based on the physiological-metabolic signature of the disease is lacking. Herein, we repurposed agrimol B as a potent anti-hydatid compound and validated its pharmacological mechanism based on arginine uptake as a target through multi-omics sequencing. This herbal component suppressed energy metabolism and activated ROS aggregation by inducing mitochondrial membrane potential depolarization, which subsequently triggered autophagy-dependent apoptosis leading to parasite death. Moreover, we discovered that arginine deprivation induced metabolic changes led to a shift from ornithine to nitrogen oxide synthesis, thus boosting the iNOS enzyme-regulated dominant metabolic pathway. The excess NO targeted the mitochondrial respiratory chain complex IV to disrupt energy metabolic homeostasis and induced a downstream pathological waterfall effect to kill the hydatid. A novel metabolic regulatory mechanism targeting mitochondrial damage for arginine starvation therapy was discovered. Finally, arginine depletion was found to be superior to the anti-spinal echinococcosis effect of albendazole and accompanied by the potential for disc protection. This study unveils the role of arginine in the physiological metabolism of Echinococcus granulosus and reveals the value of targeting arginine metabolism as a potential therapy. In addition, agrimol B is proposed as a promising therapeutic strategy for spinal echinococcosis to block arginine uptake and break this parasite's metabolic balance.


Asunto(s)
Apoptosis , Arginina , Autofagia , Equinococosis , Metabolismo Energético , Óxido Nítrico Sintasa de Tipo II , Arginina/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Equinococosis/tratamiento farmacológico , Equinococosis/metabolismo , Equinococosis/parasitología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Ratones , Echinococcus granulosus/efectos de los fármacos , Echinococcus granulosus/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
2.
Cytokine ; 181: 156669, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38875750

RESUMEN

OBJECTIVES: Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS: This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS: The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION: CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.


Asunto(s)
Biomarcadores , Quimiocina CCL17 , Quimiocina CCL19 , Progresión de la Enfermedad , Animales , Humanos , Ratones , Biomarcadores/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL17/genética , Equinococosis/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Hígado/parasitología , Hígado/metabolismo , Hígado/patología , Equinococosis Hepática/metabolismo , Equinococosis Hepática/parasitología , Femenino , Masculino , Hepatocitos/metabolismo , Hepatocitos/parasitología
3.
Biochem Pharmacol ; 226: 116337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844265

RESUMEN

Spinal cystic echinococcosis (CE) is a rare but malignant zoonosis that can cause disability or even death in more than half of patients. Due to the complex pathological features, it is not curable by conventional drugs and surgery, so new therapeutic targets urgently need to be discovered. In this study, we clarify the occurrence of the phenomenon of spinal encapsulation angiogenesis and explore its underlying molecular mechanisms. A co-culture system was established by protoscoleces (PSCs) with human umbilical vein endothelial cells (HUVECs) which showed a high expression level of Nrf2. A short hairpin RNA (shRNA) and Sulforaphane (SFN) affecting the expression of Nrf2 were used to treat HUVECs. The results showed that Nrf2 could promote the tube formation of HUVECs. Nrf2 also exerts a protective effect against HUVECs, which is achieved by promoting NQO1 expression to stabilize ROS levels. Furthermore, autophagy activation significantly promotes angiogenesis in the spinal echinococcosis model (SEM) as a result of Nrf2 regulation of oxidative stress. These results suggest that the ROS/Nrf2/autophagy axis can induce angiogenesis and may be a potential target for the treatment of spinal cystic echinococcosis.


Asunto(s)
Autofagia , Equinococosis , Células Endoteliales de la Vena Umbilical Humana , Factor 2 Relacionado con NF-E2 , Neovascularización Patológica , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Humanos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Animales , Neovascularización Patológica/metabolismo , Equinococosis/metabolismo , Ratones , Técnicas de Cocultivo , Masculino , Angiogénesis
4.
J Cell Mol Med ; 27(17): 2614-2625, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530547

RESUMEN

Hydatidosis is a disease caused by the larval stage of Echinococcus granulosus, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (IL1Β, IL15 and IL8) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and IL13 gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.


Asunto(s)
Equinococosis , Vesículas Extracelulares , Humanos , Animales , Ovinos , Monocitos/metabolismo , Interleucina-10/metabolismo , Equinococosis/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inmunidad , Vesículas Extracelulares/metabolismo
5.
Microbes Infect ; 25(7): 105147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142117

RESUMEN

The involvement of Echinococcus multilocularis, and other parasitic helminths, in regulating host physiology is well recognized, but molecular mechanisms remain unclear. Extracellular vesicles (EVs) released by helminths play important roles in regulating parasite-host interactions by transferring materials to the host. Analysis of protein cargo of EVs from E. multilocularis protoscoleces in the present study revealed a unique composition exclusively associated with vesicle biogenesis. Common proteins in various Echinococcus species were identified, including the classical EVs markers tetraspanins, TSG101 and Alix. Further, unique tegumental antigens were identified which could be exploited as Echinococcus EV markers. Parasite- and host-derived proteins within these EVs are predicted to support important roles in parasite-parasite and parasite-host communication. In addition, the enriched host-derived protein payloads identified in parasite EVs in the present study suggested that they can be involved in focal adhesion and potentially promote angiogenesis. Further, increased angiogenesis was observed in livers of mice infected with E. multilocularis and the expression of several angiogenesis-regulated molecules, including VEGF, MMP9, MCP-1, SDF-1 and serpin E1 were increased. Significantly, EVs released by the E. multilocularis protoscolex promoted proliferation and tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. Taken together, we present the first evidence that tapeworm-secreted EVs may promote angiogenesis in Echinococcus-infections, identifying central mechanisms of Echinococcus-host interactions.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Vesículas Extracelulares , Ratones , Animales , Humanos , Células Endoteliales , Equinococosis/metabolismo , Equinococosis/parasitología , Interacciones Huésped-Parásitos , Vesículas Extracelulares/metabolismo
6.
Ann Clin Lab Sci ; 51(6): 827-836, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34921036

RESUMEN

OBJECTIVE: CD8+ T cells can participate in immune action by secreting various cytokines, which have a killing effect on certain viruses, tumor cells, and other antigenic substances. However, in studies such as chronic viral infections and some parasitic infections, CD8+ T lymphocyte showed functional depletion, and its immune dysfunction was an important reason for the persistence of infection. Tim-3 has been shown to be a negative regulator of CD8+ T cell function, causing depletion of CD8+ T cells in cancer and chronic infection. However, the relationship between Tim-3 and CD8+ T cells in Echinococcus multilocularis infection is not clear. METHODS: In this study, we analyzed peripheral blood CD8+ T cells from 62 alveolar echinococcosis (AE) patients and 30 healthy controls. RESULTS: Compared with the healthy control group, the proportion of CD8+ T cells in the peripheral blood of AE patients increased significantly, while the levels of perforin, granzyme B and IFN-γ in peripheral blood CD8+ T cell related factors of metabolically active alveolar echinococcosis (MAAE) patients decreased significantly. Later detection revealed that the expression of Tim-3 on CD8+ T cells in the peripheral blood of MAAE patients was significantly higher than that of metabolically inactive alveolar echinococcosis (MIAE) patients and healthy controls. The expression levels of function-related factors perforin, granzyme B and IFN-γ in CD8+ Tim-3+ T cell were significantly lower in the CD8+Tim-3- T cells of AE patients. In vitro, the secretion of CD8+ T cell-associated factors was significantly restored by inhibiting Tim-3 expression. CONCLUSION: Therefore, the depletion of CD8+ T lymphocyte in patients with alveolar echinococcosis disease is considered to be related to the high expression of Tim-3 on the surface.


Asunto(s)
Linfocitos T CD8-positivos , Equinococosis , Granzimas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Interferón gamma/metabolismo , Perforina/metabolismo , Animales , Linfocitos T CD8-positivos/parasitología , Linfocitos T CD8-positivos/fisiología , Equinococosis/sangre , Equinococosis/inmunología , Equinococosis/metabolismo , Echinococcus multilocularis/aislamiento & purificación , Echinococcus multilocularis/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Inmunocompetencia , Masculino , Monitorización Inmunológica/métodos , Gravedad del Paciente , Receptores Virales
7.
Hepatology ; 74(6): 3376-3393, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34192365

RESUMEN

BACKGROUND AND AIMS: Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis. Although more attention has been paid to the immunotolerance of T cells caused by E. multilocularis infection, the role of natural killer (NK) cell, a critical player in liver immunity, is seldom studied. APPROACH AND RESULTS: Here, we observed that NK cells from the blood and closed liver tissue (CLT) of AE patients expressed a higher level of inhibitory receptor TIGIT and were functionally exhausted with a lower expression of granzyme B, perforin, interferon-gamma (IFN-γ), and TNF-α. Addition of anti-TIGIT (T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) monoclonal antibody into AE patients' peripheral blood mononuclear cell culture significantly enhanced the synthesis of IFN-γ and TNF-α by NK cells, indicating the reversion of exhausted NK cells by TIGIT blockade. In the mouse model of E. multilocularis infection, liver and splenic TIGIT+ NK cells progressively increased dependent of infection dosage and timing and were less activated and less degranulated with lower cytokine secretion. Furthermore, TIGIT deficiency or blockade in vivo inhibited liver metacestode growth, reduced liver injury, and increased the level of IFN-γ produced by liver NK cells. Interestingly, NK cells from mice with persistent chronic infection expressed a higher level of TIGIT compared to self-healing mice. To look further into the mechanisms, more regulatory CD56bright and murine CD49a+ NK cells with higher TIGIT expression existed in livers of AE patients and mice infected with E. multilocularis, respectively. They coexpressed higher surface programmed death ligand 1 and secreted more IL-10, two strong inducers to mediate the functional exhaustion of NK cells. CONCLUSIONS: Our results indicate that inhibitory receptor TIGIT is involved in NK cell exhaustion and immune escape from E. multilocularis infection.


Asunto(s)
Equinococosis/microbiología , Receptores Inmunológicos/metabolismo , Animales , Modelos Animales de Enfermedad , Equinococosis/inmunología , Equinococosis/metabolismo , Humanos , Células Asesinas Naturales/patología , Ratones
8.
Parasit Vectors ; 14(1): 108, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588933

RESUMEN

BACKGROUND: Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. METHODS: The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. RESULTS: In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 µg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. CONCLUSIONS: Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


Asunto(s)
Antihelmínticos/administración & dosificación , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Equinococosis/tratamiento farmacológico , Echinococcus granulosus/efectos de los fármacos , Echinococcus multilocularis/efectos de los fármacos , Proteínas del Helminto/metabolismo , Verapamilo/administración & dosificación , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Equinococosis/genética , Equinococosis/metabolismo , Equinococosis/parasitología , Echinococcus granulosus/genética , Echinococcus granulosus/crecimiento & desarrollo , Echinococcus granulosus/metabolismo , Echinococcus multilocularis/genética , Echinococcus multilocularis/crecimiento & desarrollo , Echinococcus multilocularis/metabolismo , Femenino , Proteínas del Helminto/genética , Humanos , Masculino , Ratones
9.
Parasitol Res ; 119(7): 2177-2187, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32377911

RESUMEN

Liver fibrosis is a dynamic process that occurs in response to chronic liver disease resulting from factors such as chronic infections, autoimmune reactions, allergic responses, toxins, radiation, and infectious agents. Among the infectious agents, multicellular parasites cause chronic inflammation and fibrosis. Twenty-five patients with different stages of cystic echinococcosis (CE) were enrolled in the study. The expression of ACTA2, COL3A1, IFN-γ, MMP2, MMP9, TGF-ß1, and TNF-α genes was determined by qRT-PCR in healthy and fibrotic liver tissue of the CE patients. TGF-ß1 expression was evaluated by immunohistochemistry, and histology was conducted to assess the development of liver fibrosis. Expression of MMP9, ACTA2, COL3A1, and MMP2 was found significantly higher in the fibrotic tissue compared to healthy tissue. We observed a significant correlation between TGF-ß1 and TNF-α gene expressions and liver fibrosis. The mRNA level of IFN-γ was lower in the fibrotic than in the healthy hepatic tissue. Immunohistochemistry analysis revealed TGF-ß1 upregulation in the fibrotic tissue. Histology showed inflammation and fibrosis to be significantly higher in the fibrotic tissue. The findings of this study suggest that Echinococcus granulosussensu lato can promotes fibrosis through the overexpression of TGF-ß1, MMP9, ACTA2, COL3A1, and MMP2. The downregulation of IFN-γ mRNA in fibrotic samples is probably due to the increased production of TGF-ß1 and the suppression of potential anti-fibrotic role of IFN-γ during advanced liver injury caused by E. granulosussensu lato.


Asunto(s)
Equinococosis/patología , Cirrosis Hepática/patología , Adolescente , Adulto , Animales , Niño , Equinococosis/genética , Equinococosis/metabolismo , Equinococosis/parasitología , Echinococcus granulosus/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/parasitología , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Adulto Joven
10.
PLoS Negl Trop Dis ; 14(5): e0007640, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32442168

RESUMEN

We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE.


Asunto(s)
Equinococosis/genética , Echinococcus multilocularis/fisiología , Hígado/metabolismo , MicroARNs/metabolismo , Óvulo/crecimiento & desarrollo , Animales , Equinococosis/metabolismo , Equinococosis/parasitología , Echinococcus multilocularis/crecimiento & desarrollo , Femenino , Humanos , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Óvulo/fisiología
11.
Immunobiology ; 225(3): 151916, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32107022

RESUMEN

Successful establishment of a parasite infection depends partially on the host intrinsic susceptibility to the pathogen. In cystic echinococcosis (CE), a zoonotic disease caused by the cestode parasite Echinococcus granulosus, the infection outcome in the murine model of secondary CE varies according to the mouse strain used. In this regard, intrinsic differences in susceptibility to the infection were previously reported for Balb/c and C57Bl/6 mice, being C57Bl/6 animals less permissive to secondary CE. Induction of parasite-specific antibodies has been suggested to play relevant roles in such susceptibility/resistance phenomena. Here, we report an in deep comparison of antibody responses induced in both mouse strains. Firstly, only C57Bl/6 mice were shown to induce specific-antibodies with efficient anti-parasite activities during early secondary CE. Then, through ImmunoTEM and Serological Proteome Analysis (SERPA), an evaluation of specific antibody responses targeting parasite tegumental antigens was performed. Both strategies showed that infected C57Bl/6 mice -unlike Balb/c animals- narrowed their IgG recognition repertoire against tegumental antigens, targeting fewer but potentially more relevant parasite components. In this sense, tegumental antigens recognition between Balb/c and C57Bl/6 mice, either by natural and/or induced antibodies, was analyzed through SERPA and MALDI-TOF/TOF studies. A total of 13 differentially recognized proteins (DRPs) uniquely targeted by antibodies from C57Bl/6 mice were successfully identified, wherein a subset of 7 DRPs were only recognized by infection-induced antibodies, suggesting their potential as natural protective antigens. In this regard, immunoinformatic analyses showed that such DRPs exhibited higher numbers of possible T cell epitopes towards the H-2-IAb haplotype, which is present in C57Bl/6 mice but absent in Balb/c animals. In summary, our results showed that the genetic predisposition to generate better T-dependent antibody responses against particular tegumental antigens might be a key factor influencing host susceptibility in the murine model of secondary CE.


Asunto(s)
Anticuerpos Antihelmínticos/inmunología , Antígenos Helmínticos/inmunología , Resistencia a la Enfermedad/inmunología , Equinococosis/inmunología , Equinococosis/microbiología , Echinococcus granulosus/inmunología , Interacciones Huésped-Patógeno/inmunología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Equinococosis/metabolismo , Ratones , Proteoma , Proteómica/métodos , Zoonosis
12.
Korean J Parasitol ; 57(5): 489-497, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31715689

RESUMEN

Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.


Asunto(s)
Equinococosis/parasitología , Echinococcus granulosus/metabolismo , Exosomas/química , Adulto , Animales , Cromatografía Líquida de Alta Presión , Equinococosis/sangre , Equinococosis/genética , Equinococosis/metabolismo , Echinococcus granulosus/química , Echinococcus granulosus/genética , Exosomas/genética , Exosomas/metabolismo , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteómica , Suero/metabolismo
14.
PLoS Negl Trop Dis ; 12(11): e0006891, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500820

RESUMEN

BACKGROUND: Scavenger Receptors (SRs) from the host's innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. METHODOLOGY/PRINCIPAL FINDINGS: We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. CONCLUSIONS/SIGNIFICANCE: Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos CD5/metabolismo , Equinococosis/metabolismo , Echinococcus granulosus/metabolismo , Proteínas del Helminto/metabolismo , Receptores Depuradores/metabolismo , Animales , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos CD5/genética , Equinococosis/genética , Equinococosis/parasitología , Echinococcus granulosus/genética , Femenino , Proteínas del Helminto/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Proteómica , Receptores Depuradores/genética , Linfocitos T/metabolismo , Linfocitos T/parasitología
15.
Mediators Inflamm ; 2018: 4283672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535593

RESUMEN

We aim to investigate some of the pathogenetic mediators of the human echinococcosis and to obtain updated epidemiological findings on cases of echinococcosis in Calabria, Southern Italy. Echinococcosis diagnosis was based on imaging, serological investigations, and molecular assay. Indeed, real-time PCR indicated the presence of G2/G3 genotypes of Echinococcus granulosus complex. Regarding pathogenesis, a relevant novel tool of immune depression should be deemed the reduced level of serum MCP-1. Also, we found a previously unreported VEGF, possibly associated with neovascularization requested by the parasite cyst metabolism. Cytokine profiles suggest a bias of the immunity toward Th2 and Treg responses. Nitric oxide levels exhibited a significant decrease one week after therapy versus basal level measured before surgery and/or chemotherapy. An increase of serum total IgE class and IgG4 subclass was found in Echinococcus-positive patients versus controls. Our data demonstrated an endemic spreading, at least in the province of Catanzaro and neighboring Calabria territories, for such parasitosis with the novel issue of the number of female overcoming male cases. In conclusion, the novel findings of this study were the increased VEGF and the reduced serum MCP-1 in the studied cases, as well as the number of Echinococcus-infected females overcoming the infected males.


Asunto(s)
Quimiocina CCL2/metabolismo , Equinococosis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Equinococosis/inmunología , Echinococcus granulosus/inmunología , Echinococcus granulosus/patogenicidad , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
16.
Recent Pat Biotechnol ; 12(1): 57-64, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28317492

RESUMEN

BACKGROUND AND OBJECTIVES: Hydatid cyst is the larval stage of the tapeworm Echinococcus granulosus. Hydatid cyst fluid, cyst membrane and Protoscolices, contain a complex mixture of antigens that can induce immune responses in the host. Anti-cancer properties of Protoscolices and hydatid cyst fluid has been shown. In order to identify antigens of hydatid cyst fluid that have anti-cancer effect, in this study production of monoclonal antibodies against one of the hydatid cyst fluid band (40KDa) has been investigated. There are many published patents about applications of monoclonal antibodies. METHODS: In this experimental study, 40KDa band of hydatid cyst fluid that has cross reaction with sera of patients with breast cancer was used as antigen. A group of mice were immunized with this antigen, and then their spleen cells were extracted and fused with SP2 cells. Monoclonal antibodies production was checked in wells with signs of cell growth using ELISA and western blotting. The reaction of the produced monoclonal antibodies with breast cancer cells was tested using flow cytometry method. Finally, effect of the monoclonal antibodies on growth of breast cancer cells was investigated in vitro. RESULTS: The results of this study showed that in the first plate antibody against 40KDa was detected in several wells. In the second plate monoclonal antibodies with high titer was detected in one well. The produced monoclonal antibodies reacted with the surface of breast cancer cells. However, they had no significant effect on growth of breast cancer cells in culture medium. CONCLUSION: Monoclonal antibodies against hydatid cyst fluid 40KDa band were produced. These antibodies reacted with the surface of breast cancer cells but had no significant effect on growth of these cells.


Asunto(s)
Anticuerpos Antihelmínticos/biosíntesis , Anticuerpos Monoclonales/biosíntesis , Neoplasias de la Mama/inmunología , Equinococosis/inmunología , Echinococcus granulosus/química , Larva/química , Animales , Anticuerpos Antihelmínticos/aislamiento & purificación , Anticuerpos Antihelmínticos/metabolismo , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/farmacología , Complejo Antígeno-Anticuerpo/biosíntesis , Antígenos Helmínticos/química , Antígenos Helmínticos/aislamiento & purificación , Antígenos de Neoplasias/administración & dosificación , Antígenos de Neoplasias/aislamiento & purificación , Antígenos de Neoplasias/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Equinococosis/metabolismo , Echinococcus granulosus/inmunología , Echinococcus granulosus/metabolismo , Femenino , Humanos , Hibridomas/química , Hibridomas/inmunología , Inmunización , Larva/inmunología , Larva/metabolismo , Ratones , Ratones Endogámicos BALB C , Patentes como Asunto , Bazo/citología , Bazo/inmunología
17.
Immunology ; 154(1): 76-88, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29121394

RESUMEN

The tumour-like growth of larval Echinococcus multilocularis tissue (causing alveolar echinococcosis, AE) is directly linked to the nature/orientation of the periparasitic host immune-mediated processes. Parasite-mediated immune suppression is a hallmark triggering infection outcome in both chronic human and murine AE. So far, little is known about secondary systemic immune effects of this pathogen on other concomitant diseases, e.g. endogenous gut inflammation. We examined the influence of E. multilocularis infection on murine dextran sodium sulphate (DSS) -induced colitis. At 3 months after E. multilocularis infection (chronic stage), the mice were challenged with 3% DSS in the drinking water for 5 days plus subsequently with tap water (alone) for another 4 days. After necropsy, fixed tissues/organs were sectioned and stained with haematoxylin & eosin for assessing inflammatory reactions. Cytokine levels were measured by flow cytometry and quantitative RT-PCR. Colitis severity was assessed (by board-certified veterinary pathologists) regarding (i) colon length, (ii) weight loss and (iii) a semi-quantitative score of morphological changes. The histopathological analysis of the colon showed a significant reduction of DSS-induced gut inflammation by concomitant E. multilocularis infection, which correlated with down-regulation of T helper type 1 (Th1)/Th17 T-cell responses in the colon tissue. Echinococcus multilocularis infection markedly reduced the severity of DSS-induced gut inflammation upon down-regulation of Th1/Th17 cytokine expression and attenuation of CD11b+ cell activation. In conclusion, E. multilocularis infection remarkably reduces DSS-induced colitis in mice by attenuating Th1/Th17-mediated immune reactions.


Asunto(s)
Colitis/prevención & control , Colon/inmunología , Colon/parasitología , Sulfato de Dextran , Equinococosis/inmunología , Equinococosis/parasitología , Echinococcus multilocularis/inmunología , Células TH1/inmunología , Células TH1/parasitología , Células Th17/inmunología , Células Th17/parasitología , Animales , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Antígeno CD11c/inmunología , Antígeno CD11c/metabolismo , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Colon/metabolismo , Colon/patología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Equinococosis/metabolismo , Femenino , Interacciones Huésped-Patógeno , Larva/inmunología , Ratones Endogámicos C57BL , Bazo/inmunología , Bazo/metabolismo , Bazo/parasitología , Células TH1/metabolismo , Células Th17/metabolismo , Factores de Tiempo
18.
Iran J Immunol ; 14(1): 35-50, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28341817

RESUMEN

BACKGROUND: Despite advances toward an improved understanding of the evasive mechanisms leading to the establishment of cystic echinococcosis, the discovery of specific immunosuppressive mechanisms and related factors are of great interest in the development of an immunotherapeutic approach. OBJECTIVE: To elucidate immunosuppressive effects of bioactive factors contained in chromatographic fractions from hydatid cystic fluid (HCF) of Echinococcus granulosus. METHODS: Hydatid cystic fluid was fractionated by reverse phase chromatography. Non-specific Concanavalin A-driven proliferation of spleen cells was used to determine specific inhibitory fractions. Trypan blue exclusion test and flowcytometry analysis were performed to check whether highly inhibitory fractions of HCF have apoptotic effect on peritoneal macrophages. Western blot analysis was used to determine proteolytic effects of parasitic antigens on major histocompatibility complex (MHC) class II (I-a) contained in membrane proteins extract from macrophages. RESULTS: High concentrations of HCF and few of chromatographic fractions suppressed spleen cells proliferation. Fractions 7 and 35 were the highest inhibitory fractions. Specifically fraction 35 and to a lesser extent HCF induced apoptosis in peritoneal naive macrophages. However, HCF and the fraction 7 proteolytically altered the expression of MHC class II molecules on peritoneal macrophages. The proteolytic molecule was identified to be a serine protease. Macrophages taken at the chronic and end phase from cystic echinococcosis-infected mice were able to uptake and process C-Ovalbumine-FITC. These cells expressed a drastically reduced level of (I-a) molecules. CONCLUSION: Our study present new aspects of immune suppression function of E. granulosus. Further molecular characterization of apoptotic and proteolytic factors might be useful to develop immunotherapeutic procedure to break down their inhibitory effects.


Asunto(s)
Equinococosis/metabolismo , Echinococcus granulosus/inmunología , Inmunoterapia , Macrófagos/parasitología , Bazo/metabolismo , Animales , Presentación de Antígeno , Proliferación Celular , Cromatografía de Fase Inversa , Equinococosis/inmunología , Equinococosis/terapia , Femenino , Humanos , Evasión Inmune , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Bazo/parasitología , Bazo/patología
19.
PLoS Pathog ; 13(2): e1006169, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192542

RESUMEN

We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold.


Asunto(s)
Equinococosis/metabolismo , Equinococosis/parasitología , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/fisiología , Inhibidores de Serina Proteinasa/fisiología , Animales , Echinococcus granulosus , Ganglios Espinales/efectos de los fármacos , Modelos Moleculares , Técnicas de Placa-Clamp , Filogenia , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Ratas , Ratas Wistar , Inhibidores de Serina Proteinasa/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos
20.
Rev Bras Parasitol Vet ; 25(3): 333-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683842

RESUMEN

The aim of this study was to investigate post-immunization apoptotic changes in experimental hydatidosis, using Caspase 3 and p53 immunohistochemical markers. Two groups of rabbits were immunized with a crude antigen (group 1) or a partially purified antigen (group 2) and were compared to an infected non-immunized control group. More effective immune responses were obtained in group 2 than group 1, signified by fewer and smaller cystic lesions and more severe destructive changes. Normal growth of cysts was attained in the control group, with no expression of apoptotic markers. Significantly higher expression of Caspase 3 and p53 were observed in group 1 compared to group 2, as indicated by OD and area percentage, respectively (Group 1 Caspase 3: 0.89±0.21, 93.5%±6.2; Group 1 p53: 0.46±0.18, 53.26%±11.6; Group 2 Caspase 3: 0.52±0.15, 49.23%±11.7; Group 2 p53: 0.19±0.4, 18.17%±7.3). Vaccine-induced immune responses and cellular damage may underlie the expression of apoptotic markers that appeared to result in a degenerative and atrophic course of action upon immunization. The results of the current study emphasize the importance of immunization for the stimulation of protective immune responses and in preventing mechanisms of evasion to ensure normal cell growth. A cost/benefit control program that implements proper vaccine preparations should be further assessed for complete elimination of severe infections in endemic areas.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Equinococosis/veterinaria , Inmunización/veterinaria , Proteína p53 Supresora de Tumor/metabolismo , Animales , Equinococosis/metabolismo , Equinococosis/prevención & control , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA