Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Proc Biol Sci ; 291(2023): 20232832, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747704

RESUMEN

Asexual reproduction by means of splitting, also called fissiparity, is a common feature in some asterozoan groups, especially in ophiactid brittle stars. Most fissiparous brittle stars show six instead of the usual five rays, live as epibionts on host organisms, and use clonal fragmentation to rapidly colonize secluded habitats and effectively expand the margins of their distribution area. While the biology and ecology of clonal fragmentation are comparatively well understood, virtually nothing is known about the evolution and geological history of that phenomenon. Here, we describe an exceptional fossil of an articulated six-armed brittle star from the Late Jurassic of Germany, showing one body half in the process of regeneration, and assign it to the new species Ophiactis hex sp. nov. Phylogenetic inference shows that the fossil represents the oldest member of the extant family Ophiactidae. Because the Ophiactis hex specimen shows an original six-fold symmetry combined with a morphology typically found in epizoic ophiuroids, in line with recent fissiparous ophiactid relatives, we assume that the regenerating body half is an indication for fissiparity. Ophiactis hex thus shows that fissiparity was established as a means of asexual reproduction in asterozoan echinoderms by the Late Jurassic.


Asunto(s)
Equinodermos , Fósiles , Filogenia , Reproducción Asexuada , Animales , Fósiles/anatomía & histología , Equinodermos/anatomía & histología , Equinodermos/fisiología , Evolución Biológica , Alemania
2.
Front Neural Circuits ; 17: 1258370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841894

RESUMEN

Echinoderms are a phylum of marine deterostomes with a range of interesting biological features. One remarkable ability is their impressive capacity to regenerate most of their adult tissues, including the central nervous system (CNS). The research community has accumulated data that demonstrates that, in spite of the pentaradial adult body plan, echinoderms share deep similarities with their bilateral sister taxa such as hemichordates and chordates. Some of the new data reveal the complexity of the nervous system in echinoderms. In terms of the cellular architecture, one of the traits that is shared between the CNS of echinoderms and chordates is the presence of radial glia. In chordates, these cells act as the main progenitor population in CNS development. In mammals, radial glia are spent in embryogenesis and are no longer present in adults, being replaced with other neural cell types. In non-mammalian chordates, they are still detected in the mature CNS along with other types of glia. In echinoderms, radial glia also persist into the adulthood, but unlike in chordates, it is the only known glial cell type that is present in the fully developed CNS. The echinoderm radial glia is a multifunctional cell type. Radial glia forms the supporting scaffold of the neuroepithelium, exhibits secretory activity, clears up dying or damaged cells by phagocytosis, and, most importantly, acts as a major progenitor cell population. The latter function is critical for the outstanding developmental plasticity of the adult echinoderm CNS, including physiological cell turnover, indeterminate growth, and a remarkable capacity to regenerate major parts following autotomy or traumatic injury. In this review we summarize the current knowledge on the organization and function of the echinoderm radial glia, with a focus on the role of this cell type in adult neurogenesis.


Asunto(s)
Equinodermos , Células Ependimogliales , Animales , Equinodermos/fisiología , Neuroglía/metabolismo , Neuronas , Neurogénesis/fisiología , Mamíferos
3.
Proc Biol Sci ; 290(1995): 20230092, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987636

RESUMEN

Owing to their remarkable physical properties, cellular structures, such as triply periodic minimal surfaces (TPMS), have multidisciplinary and multifunctional applications. Although these structures are observed in nature, examples of TPMS with large length scales in living organisms are exceedingly rare. Recently, microstructure reminiscent of the diamond-type TPMS was documented in the skeleton of the modern knobby starfish Protoreaster nodosus. Here we report a similar microlattice in a 385 Myr old crinoid Haplocrinites, which pushes back the origins of this highly ordered microstructure in echinoderms into the Devonian. Despite the low Mg2+/Ca2+ ratio of the 'calcite' Devonian sea, the skeleton of these crinoids has high-Mg content, which indicates strong biological control over biomineralogy. We suggest that such an optimization of trabecular arrangement additionally enriched in magnesium, which enhances the mechanical properties, might have evolved in these crinoids in response to increased predation pressure during the Middle Palaeozoic Marine Revolution. This discovery illustrates the remarkable ability of echinoderms, through the process of evolutionary optimization, to form a lightweight, stiff and damage-tolerant skeleton, which serves as an inspiration for biomimetic materials.


Asunto(s)
Evolución Biológica , Equinodermos , Animales , Equinodermos/fisiología , Estrellas de Mar
4.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651231

RESUMEN

As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.


Asunto(s)
Brazo , Equinodermos , Animales , Estaciones del Año , Australia , Equinodermos/fisiología , Temperatura , Aclimatación/fisiología , Océanos y Mares
5.
Zoolog Sci ; 38(4): 352-358, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34342956

RESUMEN

A new species of brittle star, Ophiodelos okayoshitakai, is described from two specimens collected in Sagami Bay, central-eastern Japan. Photographic examination of the holotype specimen of the sole other congener, Ophiodelos insignis Koehler, 1930, indicates that Ophiodelos okayoshitakai sp. nov. is distinguished from O. insignis by i) the disc stumps covering on the dorsal side of the disc, ii) the dorsal and ventral arm plates being separated from each other on the proximal arm regions, iii) the dorsal arm plate being smooth, iv) the arm spines at proximal portion of the arm being six in number and smooth in shape, and v) the number and shape of the tentacle scales at proximal portion of the arm being up to two and spine-shaped adradially and oval abradially. Detailed morphological observations of this new species suggest the inclusion of Ophiodelos, whose familial affiliation remains unclear, in the suborder Ophiacanthina. More than 10 juveniles of various sizes were found in the disc of Ophiodelos okayoshitakai sp. nov., indicating a brooding reproduction. This is the first report of the genus Ophiodelos from Japanese waters. We also provided a nucleotide sequence for part of the cytochrome c oxidase subunit I (COI) gene in O. okayoshitakai sp. nov. for future studies of DNA barcoding and phylogeny.


Asunto(s)
Equinodermos/fisiología , Reproducción/fisiología , Animales , Japón , Océano Pacífico
6.
BMC Biol ; 19(1): 9, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461552

RESUMEN

BACKGROUND: Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS: Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS: We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


Asunto(s)
Equinodermos/fisiología , Expresión Génica , Regeneración/fisiología , Animales , Equinodermos/genética , Equinodermos/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Regeneración/genética , Factores de Transcripción/genética
7.
J Morphol ; 282(2): 205-216, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159480

RESUMEN

Basket stars, that is, Ophiuroidea in Echinodermata, exhibit distinctive morphological characteristics with their complicatedly branched arms that can regenerate immediately after mutilation. Although, in brittle stars, that is, ophiuroids with nonbranched arms, the arm regeneration process following accidental trauma or autotomy have been morphologically and histologically observed in several species, few studies have so far been carried out on the regeneration of branched arms in basket stars. In this study, the developmental and morphological features of arm regeneration in Astrocladus dofleini (Gorgonocephalidae, Euryalida, Euryophiurida), one of the most common basket star species in Japanese waters, was anatomically and histologically investigated. Results clearly showed the following phases during the arm regeneration: (a) repair phase, (b) early regenerative phase, (c) intermediate regenerative phase, (d) advanced regenerative Phase I, and (e) advanced regenerative Phase II. The morphogenetic process during the arm regeneration in the basket star showed similar patterns to those of nonbranched arms observed in other ophiuroids. However, differences were also seen between the two ophiuroid types, that is, there were some developmental features specific to the basket star. In the early regenerative phase, branching of coelomic cavities was observed prior to the formation of other tissues, probably inducing the later morphogenesis of branched arms. In addition, hard skeletal ossicles form rapidly at the advanced regenerative Phase II. These developmental features may have led the evolution of bizarre morphologies seen in basket stars, probably contributing to the adaptation to shallow waters from deep-sea habitats.


Asunto(s)
Equinodermos/anatomía & histología , Equinodermos/fisiología , Morfogénesis , Animales , Equinodermos/citología , Sistema Musculoesquelético/anatomía & histología , Regeneración
8.
Sci Rep ; 10(1): 15147, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934271

RESUMEN

Echinoderms exhibit remarkable powers of autotomy. For instance, crinoids can shed arm and stalk portions when attacked by predators. In some species, it has been reported that the autotomized arms display vigorous movements, which are thought to divert the attention of predators. This phenomenon, however, has not been well explored. Here we present results of experiments using the shallowest water species of living stalked crinoid (Metacrinus rotundus) collected at 140 m depth. A wide range of movements of detached arms, from sluggish writhing to violent flicks, was observed. Interestingly, autotomized arms produce distinct traces on the sediment surface. They are composed of straight or arched grooves usually arranged in radiating groups and shallow furrows. Similar traces were found associated with detached arms of the oldest (Early Triassic) stem-group isocrinid (Holocrinus). This finding may suggest that the origins of autotomy-related thrashing behaviour in crinoids could be traced back to at least the Early Triassic, underscoring the magnitude of anti-predatory traits that occurred during the Mesozoic Marine Revolution. A new ethological category, autotomichnia, is proposed for the traces produced by thrashing movements of shed appendages.


Asunto(s)
Conducta Animal , Equinodermos/fisiología , Extremidades/fisiología , Fósiles , Movimiento , Conducta Predatoria , Animales , Evolución Biológica , Fenómenos Biomecánicos
9.
Zoolog Sci ; 37(5): 496-503, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32972090

RESUMEN

We describe Obesostoma crinophilum sp. nov. (Ostracoda: Podocopida: Paradoxostomatidae) obtained from the body surface of the feather star Antedon serrata A. H. Clark, 1908 (Crinoidea: Comatulida: Antedonidae). This is the first report of Ostracoda associated with Crinoidea. None of the highly specialized appendages and/or carapace that are related to a commensal lifestyle were observed in O. crinophilum sp. nov. Therefore, the relationship between O. crinophilum sp. nov. and A. serrata must be transient rather than obligatory. However, O. crinophilum sp. nov. has a more developed hook-like distal claw on the antenna in comparison with four previously known Obesostoma species. The relatively well-developed distal claw of the antenna in O. crinophilum sp. nov. should indicate its intimate association with feather stars, though the feeding habit is still unknown.


Asunto(s)
Crustáceos/clasificación , Equinodermos/fisiología , Simbiosis , Animales , Crustáceos/anatomía & histología , Femenino , Masculino , Especificidad de la Especie
10.
PLoS One ; 15(5): e0232981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32396580

RESUMEN

Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.


Asunto(s)
Equinodermos/fisiología , Receptores Notch/fisiología , Regeneración/fisiología , Estructuras Animales/efectos de los fármacos , Estructuras Animales/fisiología , Animales , Elementos Transponibles de ADN , Dipéptidos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Equinodermos/efectos de los fármacos , Equinodermos/genética , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Sci Rep ; 10(1): 3348, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098989

RESUMEN

Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.


Asunto(s)
Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Pepinos de Mar/fisiología , Animales , Equinodermos/genética , Equinodermos/fisiología , Genoma/genética , Neuronas Receptoras Olfatorias/metabolismo , Pepinos de Mar/genética , Alineación de Secuencia , Stichopus/genética , Transcriptoma/genética
12.
J Struct Biol ; 211(1): 107481, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088334

RESUMEN

Brittle stars are known for the high flexibility of their arms, a characteristic required for locomotion, food grasping, and for holding onto a great diversity of substrates. Their high agility is facilitated by the numerous discrete skeletal elements (ossicles) running through the center of each arm and embedded in the skin. While much has been learned regarding the structural diversity of these ossicles, which are important characters for taxonomic purposes, their impact on the arms' range of motion, by contrast, is poorly understood. In the present study, we set out to investigate how ossicle morphology and skeletal organization affect the flexibility of brittle star arms. Here, we present the results of an in-depth analysis of three brittle star species (Ophioplocus esmarki, Ophiopteris papillosa, and Ophiothrix spiculata), chosen for their different ranges of motion, as well as spine size and orientation. Using an integrated approach that combines behavioral studies with parametric modeling, additive manufacturing, micro-computed tomography, scanning electron microscopy, and finite element simulations, we present a high-throughput workflow that provides a fundamental understanding of 3D structure-kinematic relationships in brittle star skeletal systems.


Asunto(s)
Equinodermos/anatomía & histología , Equinodermos/ultraestructura , Esqueleto/ultraestructura , Animales , Fenómenos Biomecánicos , Equinodermos/fisiología , Esqueleto/anatomía & histología , Esqueleto/fisiología , Microtomografía por Rayos X
13.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992167

RESUMEN

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Asunto(s)
Organismos Acuáticos/fisiología , Invertebrados/fisiología , Animales , Conducta Animal , Biodiversidad , Equinodermos/fisiología , Ecosistema , Fenotipo
14.
J Exp Biol ; 223(Pt 4)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31974222

RESUMEN

Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.


Asunto(s)
Dieta , Equinodermos/fisiología , Imidazoles/administración & dosificación , Pirazinas/administración & dosificación , Animales , Mediciones Luminiscentes , Cloruro de Potasio/farmacología
15.
Curr Biol ; 30(2): 319-327.e4, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902727

RESUMEN

Almost all animals can sense light, but only those with spatial vision can "see." Conventionally, this was restricted to animals possessing discrete visual organs (eyes), but extraocular vision could facilitate vision without eyes. Echinoderms form the focus of extraocular vision research [1-7], and the brittle star Ophiocoma wendtii, which exhibits light-responsive color change and shelter seeking, became a key species of interest [4, 8, 9]. Both O. wendtii and an apparently light-indifferent congeneric, O. pumila, possess an extensive network of r-opsin-reactive cells, but its function remains unclear [4]. We show that, although both species are strongly light averse, O. wendtii orients to stimuli necessitating spatial vision for detection, but O. pumila does not. However, O. wendtii's response disappears when chromatophores are contracted within the skeleton. Combining immunohistochemistry, histology, and synchrotron microtomography, we reconstructed models of photoreceptors in situ and extracted estimated angular apertures for O. wendtii and O. pumila. Angular sensitivity estimates, derived from these models, support the hypothesis that chromatophores constitute a screening mechanism in O. wendtii, providing sufficient resolving power to detect the stimuli. RNA sequencing (RNA-seq) identified opsin candidates in both species, including multiple r-opsins and transduction pathway constituents, congruent with immunohistochemistry and studies of other echinoderms [10, 11]. Finally, we note that differing body postures between the two species during experiments may reflect aspect of signal integration. This represents one of the most detailed mechanisms for extraocular vision yet proposed and draws interesting parallels with the only other confirmed extraocular visual system, that of some sea urchins, which also possess chromatophores [1].


Asunto(s)
Cromatóforos/fisiología , Equinodermos/fisiología , Fototaxis , Percepción Visual , Animales , Luz
16.
Sci Rep ; 9(1): 8298, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31165756

RESUMEN

Physiological experiments and mathematical models have supported that neuronal activity is crucial for coordinating rhythmic movements in animals. On the other hand, robotics studies have suggested the importance of physical properties made by body structure, i.e. morphology. However, it remains unclear how morphology affects movement coordination in animals, independent of neuronal activity. To begin to understand this issue, our study reports a rhythmic movement in the green brittle star Ophiarachna incrassata. We found this animal moved five radially symmetric parts in a well-ordered unsynchronized pattern. We built a phenomenological model where internal fluid flows between the five body parts to explain the coordinated pattern without considering neuronal activity. Changing the number of the body parts from five to six, we simulated a synchronized pattern, which was demonstrated also by an individual with six symmetric parts. Our model suggests a different number in morphology makes a different fluid flow, leading to a different synchronization pattern in the animal.


Asunto(s)
Equinodermos/anatomía & histología , Equinodermos/fisiología , Movimiento , Animales , Fenómenos Biomecánicos , Simulación por Computador , Modelos Teóricos , Agua de Mar
17.
Nat Commun ; 10(1): 1366, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911013

RESUMEN

Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuterostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem-echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates.


Asunto(s)
Equinodermos/anatomía & histología , Fósiles/anatomía & histología , Filogenia , Animales , Evolución Biológica , China , Cordados no Vertebrados/anatomía & histología , Cordados no Vertebrados/clasificación , Cordados no Vertebrados/fisiología , Equinodermos/clasificación , Equinodermos/fisiología , Fósiles/historia , Sedimentos Geológicos/análisis , Historia Antigua
18.
J Exp Biol ; 222(Pt 2)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30464042

RESUMEN

Echinoderms lack a centralized nervous control system, yet each extant echinoderm class has evolved unique and effective strategies for locomotion. Brittle stars (Ophiuroidea) stride swiftly over the seafloor by coordinating motions of their five muscular arms. Their arms consist of many repeating segments, requiring them to use a complex control system to coordinate motions among segments and between arms. We conducted in vivo experiments with brittle stars to analyze the functional role of the nerve ring, which connects the nerves in each arm. These experiments were designed to determine how the ophiuroid nervous system performs complex decision making and locomotory actions under decentralized control. Our results show that brittle star arms must be connected by the nerve ring for coordinated locomotion, but information can travel bidirectionally around the nerve ring so that it circumvents the severance. Evidence presented indicates that ophiuroids rely on adjacent nerve ring connections for sustained periodic movements. The number of arms connected via the nerve ring is correlated positively with the likelihood that the animal will show coordinated locomotion, indicating that integrated nerve ring tissue is critical for control. The results of the experiments should provide a basis for the advancement of complex artificial decentralized systems.


Asunto(s)
Equinodermos/fisiología , Locomoción/fisiología , Animales , Fenómenos Fisiológicos del Sistema Nervioso
19.
Dev Neurobiol ; 79(5): 396-405, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30548565

RESUMEN

Radial glial cells are crucial in vertebrate neural development and regeneration. It has been recently proposed that this neurogenic cell type might be older than the chordate lineage itself and might have been present in the last common deuterostome ancestor. Here, we summarize the results of recent studies on radial glia in echinoderms, a highly regenerative phylum of marine invertebrates with shared ancestry to chordates. We discuss the involvement of these cells in both homeostatic neurogenesis and post-traumatic neural regeneration, compare the features of radial glia in echinoderms and chordates to each other, and review the molecular mechanisms that control differentiation and plasticity of the echinoderm radial glia. Overall, studies on echinoderm radial glia provide a unique opportunity to understand the fundamental biology of this cell type from evolutionary and comparative perspectives.


Asunto(s)
Equinodermos/citología , Equinodermos/fisiología , Neuroglía/citología , Neuroglía/fisiología , Animales , Evolución Biológica , Homeostasis/fisiología , Regeneración Nerviosa/fisiología , Neurogénesis/fisiología
20.
J Anat ; 233(6): 696-714, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30353539

RESUMEN

Brittle stars (Phylum Echinodermata, Class Ophiuroidea) have evolved rapid locomotion employing muscle and skeletal elements within their (usually) five arms to apply forces in a manner analogous to that of vertebrates. Inferring the inner workings of the arm has been difficult as the skeleton is internal and many of the ossicles are sub-millimeter in size. Advances in 3D visualization and technology have made the study of movement in ophiuroids possible. We developed six virtual 3D skeletal models to demonstrate the potential range of motion of the main arm ossicles, known as vertebrae, and six virtual 3D skeletal models of non-vertebral ossicles. These models revealed the joint center and relative position of the arm ossicles during near-maximal range of motion. The models also provide a platform for the comparative evaluation of functional capabilities between disparate ophiuroid arm morphologies. We made observations on specimens of Ophioderma brevispina and Ophiothrix angulata. As these two taxa exemplify two major morphological categories of ophiuroid vertebrae, they provide a basis for an initial assessment of the functional consequences of these disparate vertebral morphologies. These models suggest potential differences in the structure of the intervertebral articulations in these two species, implying disparities in arm flexion mechanics. We also evaluated the differences in the range of motion between segments in the proximal and distal halves of the arm length in a specimen of O. brevispina, and found that the morphology of vertebrae in the distal portion of the arm allows for higher mobility than in the proximal portion. Our models of non-vertebral ossicles show that they rotate further in the direction of movement than the vertebrae themselves in order to accommodate arm flexion. These findings raise doubts over previous hypotheses regarding the functional consequences of ophiuroid arm disparity. Our study demonstrates the value of integrating experimental data and visualization of articulated structures when making functional interpretations instead of relying on observations of vertebral or segmental morphology alone. This methodological framework can be applied to other ophiuroid taxa to enable comparative functional analyses. It will also facilitate biomechanical analyses of other invertebrate groups to illuminate how appendage or locomotor function evolved.


Asunto(s)
Equinodermos/anatomía & histología , Equinodermos/fisiología , Locomoción/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Sistema Musculoesquelético/anatomía & histología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA