Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
ACS Chem Biol ; 19(7): 1544-1553, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38915184

RESUMEN

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/enzimología , Glutaratos/metabolismo , Glutaratos/química , Losartán/farmacología , Losartán/química , Coenzima A Transferasas/metabolismo , Coenzima A Transferasas/antagonistas & inhibidores , Coenzima A Transferasas/genética , Coenzima A Transferasas/química , Valsartán , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cristalografía por Rayos X , Dominio Catalítico , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Modelos Moleculares , Ensayos Analíticos de Alto Rendimiento , Glutaril-CoA Deshidrogenasa/deficiencia
2.
Nat Commun ; 15(1): 3804, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714648

RESUMEN

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Modelos Animales de Enfermedad , Fenilcetonurias , Acidemia Propiónica , ARN Mensajero , Acidemia Propiónica/genética , Acidemia Propiónica/terapia , Acidemia Propiónica/tratamiento farmacológico , Animales , Fenilcetonurias/genética , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/terapia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Ratones , Humanos , Masculino , Femenino , Nanopartículas/química , Ratones Endogámicos C57BL , Liposomas
3.
J Pediatr Endocrinol Metab ; 37(4): 380-386, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38436354

RESUMEN

OBJECTIVES: Transcobalamin II (TC) promotes the cellular uptake of cobalamin (Cbl) through receptor-mediated endocytosis of the TC-cbl complex in peripheral tissues. TC deficiency is a rare disorder that causes intracellular Cbl depletion. It presents in early infancy with a failure to thrive, diarrhea, anemia, agammaglobulinemia, and pancytopenia. Data from five TC-deficient patients including clinical, biochemical, and molecular findings, as well as long-term outcomes, were collected. CASE PRESENTATION: Mutation analysis revealed one unreported pathogenic variant in the TCN2 gene. One patient had exocrine pancreatic insufficiency. We conducted a retrospective analysis of C3 and C3/C2 from dried blood samples, as this is implemented for newborn screening (NBS). We detected a marked increase in the C3/C2 ratio in two samples. Treatment was based on parenteral Cbl. Three patients treated before six months of age had an initial favorable outcome, whereas the two treated later or inadequately had neurological impairment. CONCLUSIONS: This is the first report of Argentinean patients with TC deficiency that detected a new variant in TCN2. NBS may be a tool for the early detection of TC deficiency. This data emphasizes that TC deficiency is a severe disorder that requires early detection and long-term, aggressive therapy. Accurate diagnosis is imperative, because early detection and treatment can be life-saving.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Anemia Macrocítica , Deficiencia de Vitamina B 12 , Recién Nacido , Humanos , Vitamina B 12/uso terapéutico , Transcobalaminas/genética , Estudios Retrospectivos , Deficiencia de Vitamina B 12/diagnóstico , Deficiencia de Vitamina B 12/tratamiento farmacológico , Deficiencia de Vitamina B 12/genética , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Diagnóstico Precoz
4.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387306

RESUMEN

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Asunto(s)
Proteínas Portadoras , Hidroxocobalamina , Fenotipo , Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Hidroxocobalamina/administración & dosificación , Hidroxocobalamina/uso terapéutico , Masculino , Femenino , Deficiencia de Vitamina B 12/genética , Deficiencia de Vitamina B 12/tratamiento farmacológico , Deficiencia de Vitamina B 12/sangre , Vitamina B 12/sangre , Preescolar , Proteínas Portadoras/genética , Estudios Retrospectivos , Oxidorreductasas/genética , Niño , Ácido Metilmalónico/sangre , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Lactante , Mutación Missense , Homocigoto , Heterocigoto , Homocisteína/sangre , Adolescente , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Adulto
5.
Drugs R D ; 24(1): 69-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198106

RESUMEN

BACKGROUND AND OBJECTIVE: Methylmalonic aciduria (MMA) and propionic aciduria (PA) are organic acidurias characterised by the accumulation of toxic metabolites and hyperammonaemia related to secondary N-acetylglutamate deficiency. Carglumic acid, a synthetic analogue of N-acetylglutamate, decreases ammonia levels by restoring the functioning of the urea cycle. However, there are limited data available on the long-term safety and effectiveness of carglumic acid. Here, we present an interim analysis of the ongoing, long-term, prospective, observational PROTECT study (NCT04176523), which is investigating the long-term use of carglumic acid in children and adults with MMA and PA. METHODS: Individuals with MMA or PA from France, Germany, Italy, Norway, Spain, Sweden and the UK who have received at least 1 year of carglumic acid treatment as part of their usual care are eligible for inclusion. The primary objective is the number and duration of acute metabolic decompensation events with hyperammonaemia (ammonia level >159 µmol/L during a patient's first month of life or >60 µmol/L thereafter, with an increased lactate level [> 1.8 mmol/L] and/or acidosis [pH < 7.35]) before and after treatment with carglumic acid. Peak plasma ammonia levels during the last decompensation event before and the first decompensation event after carglumic acid initiation, and the annualised rate of decompensation events before and after treatment initiation are also being assessed. Secondary objectives include the duration of hospital stay associated with decompensation events. Data are being collected at approximately 12 months' and 18 months' follow-up. RESULTS: Of the patients currently enrolled in the PROTECT study, data from ten available patients with MMA (n = 4) and PA (n = 6) were analysed. The patients had received carglumic acid for 14-77 (mean 36) months. Carglumic acid reduced the median peak ammonia level of the total patient population from 250 µmol/L (range 97-2569) before treatment to 103 µmol/L (range 97-171) after treatment. The annualised rate of acute metabolic decompensations with hyperammonaemia was reduced by a median of - 41% (range - 100% to + 60%) after treatment with carglumic acid. Of the five patients who experienced a decompensation event before treatment and for whom a post-treatment rate could be calculated, the annualised decompensation event rate was lower after carglumic acid treatment in four patients. The mean duration of hospital inpatient stay during decompensation events was shorter after than before carglumic acid treatment initiation in four of five patients for whom length of stay could be calculated. CONCLUSIONS: In this group of patients with MMA and PA, treatment with carglumic acid for at least 1 year reduced peak plasma ammonia levels in the total patient population and reduced the frequency of metabolic decompensation events, as well as the duration of inpatient stay due to metabolic decompensations in a subset of patients. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT04176523. Registered 25 November, 2019, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04176523 .


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Acidemia Propiónica , Humanos , Acidemia Propiónica/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Adulto , Estudios Prospectivos , Femenino , Masculino , Niño , Preescolar , Adolescente , Glutamatos/uso terapéutico , Lactante , Hiperamonemia/tratamiento farmacológico , Adulto Joven , Persona de Mediana Edad , Amoníaco/sangre
6.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110041

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Succionato-Semialdehído Deshidrogenasa/genética
7.
Mol Genet Genomic Med ; 11(1): e2073, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331064

RESUMEN

BACKGROUND: Methylmalonic acidemia (MMA) is an inborn error of metabolism whose optimal management, especially in the long-term remains to be established. METHODS: We describe the case of a child with MMA mut0 who was in a cycle of episodes of decompensation and hospitalization when we started to use carglumic acid (CA), a well-known adjunctive therapy to standard care for the treatment of acute hyperammonemia due to MMA. RESULTS: Using the lowest effective therapeutic dose of CA and adjusting the patient's diet with caloric and protein intake adequate for her age and pathology, we managed to keep ammonium levels within the normal range, and to ensure a normal growth pattern. CONCLUSION: The present case adds further confirmation of the long-term management of MMA using CA, focusing on the long duration of follow up and on the use of a lower dose of CA in real life settings.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Hiperamonemia , Humanos , Niño , Femenino , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Italia
8.
Am J Kidney Dis ; 81(4): 493-496, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36223829

RESUMEN

Lysinuric protein intolerance (LPI) is a rare metabolic disorder with reduced renal and intestinal reabsorption of ornithine, lysine, and arginine. It is due to variants in SLC7A7, the gene encoding y+L amino acid transporter 1 (y+LAT1), which lead to urea cycle defects with protein intolerance. Chronic kidney disease in lysinuric protein intolerance is common and can progress to kidney failure and initiation of kidney replacement therapy. Kidney transplantation could in theory improve urine levels and, consequently, plasma levels of these amino acids and therefore improve clinical symptoms, as well as protein intolerance, in patients with lysinuric protein intolerance. However, data on kidney transplantation in patients with lysinuric protein intolerance are limited, and up until now no data on clinical and biochemical improvement after kidney transplantation have been reported. In this case report we describe a rare case of kidney transplantation in a lysinuric protein intolerance patient with substantial improvement in protein tolerance; in plasma and urine levels of ornithine, lysine, and arginine; and in lysinuric protein intolerance symptoms.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trasplante de Riñón , Enfermedades Metabólicas , Humanos , Lisina/orina , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Arginina/uso terapéutico , Arginina/metabolismo , Ornitina/uso terapéutico , Sistema de Transporte de Aminoácidos y+L
9.
Neurocase ; 28(4): 388-392, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36219783

RESUMEN

Combined methylmalonic acidemia and homocystinuria, is a rare autosomal recessive disorder due to defective intracellular cobalamin metabolism. We report an 18-year-old Chinese male who presented with hypermyotonia, seizures, and congenital heart diseases. Mutation analysis revealed c.365A>T and c.482 G>A mutations in the MMACHC gene, diagnosed with methylmalonic aciduria and homocystinuria (CblC type). After treatment with vitamin B12, L-carnitine, betaine, and folate, which resulted in an improvement in his clinical symptoms and laboratory values. This case emphasizes that inborn errors of metabolism should be considered for a teenager presenting with challenging or neurologic symptoms, especially when combined with unexplained heart diseases.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Cardiopatías Congénitas , Homocistinuria , Masculino , Adolescente , Humanos , Homocistinuria/complicaciones , Homocistinuria/diagnóstico , Homocistinuria/tratamiento farmacológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/uso terapéutico , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Vitamina B 12 , Mutación , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/tratamiento farmacológico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/uso terapéutico
10.
Behav Neurol ; 2022: 2210555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268467

RESUMEN

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare congenital autosomal recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human AADC gene into the putamina has become available. This systematic review on PubMed, Scopus databases, and other sources is aimed at describing the AADC whole phenotypic spectrum in order to facilitate its early diagnosis. Literature reviews, original articles, retrospective and comparative studies, large case series, case reports, and short communications were considered. A database was set up using Microsoft Excel to collect clinical, molecular, biochemical, and therapeutic data. By analysing 261 patients from 41 papers with molecular and/or biochemical diagnosis of AADC deficiency for which individuality could be determined with certainty, we found symptom onset to occur in the first 6 months of life in 93% of cases. Hypotonia and developmental delay are cardinal signs, reported as present in 73.9% and 72% of cases, respectively. Oculogyric crises were seen in 67% of patients while hypokinesia in 42% and ptosis in 26%. Dysautonomic features have been revealed in 53% and gastrointestinal symptoms in 19% of cases. With 37% and 30% of patients reported being affected by sleep and behavioural disorders, it seems to be commoner than previously acknowledged. Although reporting bias cannot be excluded, there is still a need for comprehensive clinical descriptions of symptoms at onset and during follow-up. In fact, our review suggests that most of the neurological and extraneurological symptoms and signs reported, although quite frequent in this condition, are not pathognomonic, and therefore, ADCC deficiency can remain an underdiscovered disorder.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Dopa-Decarboxilasa , Humanos , Dopa-Decarboxilasa/genética , Dopa-Decarboxilasa/uso terapéutico , Estudios Retrospectivos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Aminoácidos/uso terapéutico
11.
Mol Genet Genomic Med ; 10(7): e1971, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35712814

RESUMEN

BACKGROUND: Cardiomyopathy is a known complication of organic acidemias but generally thought to be secondary to poor metabolic control. METHODS: Our patient was found through biochemical testing and Sanger sequencing to harbor an Icelandic founder mutation: NM_052845.4(MMAB):c.571C > T(p.Arg191Trp), leading to an early presentation (4 h after birth) of cblB-type methylmalonic acidemia (MMA). Biochemical testing of this patient suggested B-12-responsiveness and thus the patient was treated with cyanocobalamin throughout life. Informed parental consent was obtained for this report. RESULTS: Our patient had three metabolic decompensations in her life (at birth, at 1 month, and at 5 months). The first decompensation was probably linked to stress of delivery, second to rhinovirus infection, and third by co-infection of norovirus and enterovirus. At 3 months, the patient was noted to be tachypneic, although this was attributed to her underlying metabolic acidosis. At 5 months and 10 days, the patient was admitted with minor flu-like symptoms but developed severe diarrhea in hospital and upon rehydration had cardiac decompensation and was found to have undiagnosed dilated cardiomyopathy. Although, patient was treated aggressively with dextrose, hemodialysis, levocarnitine, and vasoactive agents, there was limited response to medications to treat cardiac failure, and eventually the patient passed away before turning 6 months old. CONCLUSIONS: Other than these three mild decompensations, patient had very good metabolic control, thus demonstrating that even without frequent metabolic decompensation, cardiomyopathy can be an observed phenotype in cblB-type MMA even very early in life, suggesting that this phenotype may be independent of metabolic control.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Cardiomiopatías , Proteínas Adaptadoras Transductoras de Señales/genética , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/genética , Femenino , Humanos , Mutación , Proteínas Proto-Oncogénicas c-cbl/genética
12.
Am J Med Genet A ; 188(6): 1831-1835, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35156754

RESUMEN

This case report describes a patient with early-onset cobalamin C deficiency who was started on treatment with high-dose parenteral hydroxocobalamin after diagnosis at 13 days of life. Prior to diagnosis, initial presenting symptoms included poor feeding, lethargy, apneic episodes, hypothermia, and hypotonia; these symptoms resolved after initiation of medication. Methylmalonic acid and homocysteine levels were trended and significantly improved with treatment. She was maintained on 2 mg/kg/day dosing of hydroxocobalamin. No adverse effects to treatment were observed. At the time of this report, the patient was 19 months of age; she had not manifested common findings of early-onset cobalamin C deficiency, including microcephaly, poor feeding, growth abnormalities, hypotonia, seizures, maculopathy, or neurodevelopmental delay. This report suggests that early initiation of high-dose hydroxocobalamin is safe and effective.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Deficiencia de Vitamina B 12 , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Femenino , Humanos , Hidroxocobalamina/uso terapéutico , Recién Nacido , Ácido Metilmalónico , Hipotonía Muscular/tratamiento farmacológico , Deficiencia de Vitamina B 12/diagnóstico , Deficiencia de Vitamina B 12/tratamiento farmacológico
13.
J Inherit Metab Dis ; 45(2): 132-143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038174

RESUMEN

There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13 C-propionate (exhaled 13 CO2 ), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Acidemia Propiónica , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Biomarcadores , Desarrollo de Medicamentos , Humanos , Ácido Metilmalónico , Acidemia Propiónica/complicaciones , Acidemia Propiónica/diagnóstico , Acidemia Propiónica/tratamiento farmacológico
14.
J Cyst Fibros ; 21(4): 603-605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34974990

RESUMEN

CFTR mutation carriers, numbering 1 in 25 among Caucasians, have an increased risk of developing chronic pancreatitis due to the underlying dysfunction of ion channels created by the mutant allele. Carriers do not frequently manifest disease due to the remaining wild-type CFTR protein sufficiently maintaining normal pancreatic homeostasis. However, additional risk factors for pancreatitis, such as organic acidemias (as seen in our patient) that further impact function of pancreatic acinar cells can result in the precipitation of CFTR related pancreatitis. Here we report a CFTR carrier with methylmalonic acidemia who was treated with ivacaftor and subsequently experienced resolution of her chronic pancreatitis. Our report suggests that ivacaftor may rescue the function of mutant CFTR in carriers and treat pancreatitis caused by CFTR dysfunction in situations where there are additional precipitating factors.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Agonistas de los Canales de Cloruro , Pancreatitis Crónica , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Aminofenoles/uso terapéutico , Agonistas de los Canales de Cloruro/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Humanos , Mutación , Pancreatitis Crónica/complicaciones , Pancreatitis Crónica/tratamiento farmacológico , Quinolonas
15.
BMC Pediatr ; 21(1): 578, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915869

RESUMEN

BACKGROUND: Isolated methylmalonic aciduria can be caused by pathogenic mutations in the gene for methylmalonyl-CoA mutase or in the genes encoding enzymes involved in the intracellular metabolism of cobalamin. Some of these mutations may be cobalamin responsive. The type of methylmalonic aciduria cannot always be assumed from clinical manifestation and the responsiveness to cobalamin has to be assessed for appropriate cobalamin administration, or to avoid unnecessary treatment. The cases presented herein highlight the importance of genetic testing in methylmalonic aciduria cases and the need for standardisation of the in vivo cobalamin-responsiveness assessment. CASE PRESENTATION: We describe two patients who presented in the first week of life with rapid neurological deterioration caused by metabolic acidosis with severe hyperammonaemia requiring extracorporeal elimination in addition to protein restriction, energy support, carnitine, and vitamin B12 treatment. The severity of the clinical symptoms and high methylmalonic acid concentrations in the urine (>30,000 µmol/mmol of creatinine) without hyperhomocysteinaemia in both of our patients suggested isolated methylmalonic aciduria. Based on the neonatal manifestation and the high methylmalonic acid urine levels, we assumed the cobalamin non-responsive form. The in vivo test of responsiveness to cobalamin was performed in both patients. Patient 1 was evaluated as non-responsive; thus, intensive treatment with vitamin B12 was not used. Patient 2 was responsive to cobalamin, but the dose was decreased to 1 mg i.m. every two weeks with daily oral treatment due to non-compliance. Genetic tests revealed bi-allelic mutations in the genes MMAB and MMAA in Patient 1 and 2, respectively. Based on these results, we were able to start intensive treatment with hydroxocobalamin in both patients. After the treatment intensification, there was no acute crisis requiring hospitalisation in Patient 1, and the urine methylmalonic acid levels further decreased in Patient 2. CONCLUSIONS: Despite carrying out the in vivo test of responsiveness to cobalamin in both patients, only the results of molecular genetic tests led us to the correct diagnosis and enabled intensive treatment with hydroxocobalamin. The combination of the standardized in vivo test of cobalamin responsiveness and genetic testing is needed for accurate diagnosis and appropriate treatment of isolated methylmalonic aciduria.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Pruebas Genéticas , Humanos , Recién Nacido , Ácido Metilmalónico , Metilmalonil-CoA Mutasa/genética , Vitamina B 12/uso terapéutico
16.
Orphanet J Rare Dis ; 16(1): 422, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635114

RESUMEN

BACKGROUND: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare, autosomal recessive inborn errors of metabolism that require life-long medical treatment. The trial aimed to evaluate the effectiveness of the administration of carglumic acid with the standard treatment compared to the standard treatment alone in the management of these organic acidemias. METHODS: The study was a prospective, multicenter, randomized, parallel-group, open-label, controlled clinical trial. Patients aged ≤ 15 years with confirmed PA and MMA were included in the study. Patients were followed up for two years. The primary outcome was the number of emergency room (ER) admissions because of hyperammonemia. Secondary outcomes included plasma ammonia levels over time, time to the first episode of hyperammonemia, biomarkers, and differences in the duration of hospital stay. RESULTS: Thirty-eight patients were included in the study. On the primary efficacy endpoint, a mean of 6.31 ER admissions was observed for the carglumic acid arm, compared with 12.76 for standard treatment, with a significant difference between the groups (p = 0.0095). Of the secondary outcomes, the only significant differences were in glycine and free carnitine levels. CONCLUSION: Using carglumic acid in addition to standard treatment over the long term significantly reduces the number of ER admissions because of hyperammonemia in patients with PA and MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Acidemia Propiónica , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Glutamatos , Humanos , Ácido Metilmalónico , Acidemia Propiónica/tratamiento farmacológico , Estudios Prospectivos
17.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34181873

RESUMEN

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Encefalopatías Metabólicas/tratamiento farmacológico , Carnitina/uso terapéutico , Glutaril-CoA Deshidrogenasa/deficiencia , Inflamación/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Encefalopatías Metabólicas/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Catepsina D/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Glutaril-CoA Deshidrogenasa/genética , Aseo Animal/efectos de los fármacos , Inflamación/genética , Interleucina-1beta/metabolismo , Locomoción/efectos de los fármacos , Lisina/farmacología , Ratones Noqueados , Prueba de Campo Abierto/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
18.
J Med Chem ; 64(8): 5037-5048, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33848153

RESUMEN

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, caused by a deficiency in the enzymes P-CoA carboxylase and methylmalonyl-CoA (M-CoA) mutase, respectively. PA and MMA are classified as intoxication-type inborn errors of metabolism because the intramitochondrial accumulation of P-CoA, M-CoA, and other metabolites results in secondary inhibition of multiple pathways of intermediary metabolism, leading to organ dysfunction and failure. Herein, we describe the structure-activity relationships of a series of short-chain carboxylic acids which reduce disease-related metabolites in PA and MMA primary hepatocyte disease models. These studies culminated in the identification of 2,2-dimethylbutanoic acid (10, HST5040) as a clinical candidate for the treatment of PA and MMA. Additionally, we describe the in vitro and in vivo absorption, distribution, metabolism, and excretion profile of HST5040, data from preclinical studies, and the synthesis of the sodium salt of HST5040 for clinical trials.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Butiratos/uso terapéutico , Acidemia Propiónica/tratamiento farmacológico , Acilcoenzima A/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Área Bajo la Curva , Butiratos/química , Butiratos/metabolismo , Células Cultivadas , Perros , Evaluación Preclínica de Medicamentos , Semivida , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Ratones , Modelos Biológicos , Acidemia Propiónica/patología , Curva ROC , Ratas , Relación Estructura-Actividad
19.
Mol Genet Metab ; 133(1): 71-82, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741272

RESUMEN

Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Mutasa/genética , Acidemia Propiónica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Acilcoenzima A/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Carnitina/metabolismo , Línea Celular , Citratos/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Metilmalonil-CoA Mutasa/deficiencia , Acidemia Propiónica/genética , Acidemia Propiónica/patología
20.
Medicina (Kaunas) ; 57(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540566

RESUMEN

Methylmalonic aciduria is treated with a natural protein-restricted diet with adequate energy intake to sustain metabolic balance. Natural protein is a source of methylmalonic acid precursors, and intake is individually modified according to the severity and clinical course of the disease. The experience and approach to MMA treatment in European centers is variable with different amounts of natural protein and precursor-free l-amino acids being prescribed, although the outcome appears independent of the use of precursor-free l-amino acids. Further long-term outcome data is necessary for early treated patients with MMA. This case study, a woman with MMA followed from birth to the age of 35 years, including pregnancy, illustrates the long-term course of the disease and lifetime changes in dietary treatment. A low natural protein diet (1.5 g-1.0 g/kg/day) was the foundation of treatment, but temporary supplementation with precursor-free l-amino acids, vitamin-mineral mixture, and energy supplements were necessary at different timepoints (in childhood, adolescence, adulthood and pregnancy). Childhood psychomotor development was slightly delayed but within the normal range in adulthood. There were few episodes of metabolic decompensation requiring IV glucose, but at age 27 years, she required intensive care following steroid treatment. In pregnancy, she remained stable but received intensive biochemical and medical follow-up. This successful long-term follow-up of a patient with MMA from childhood, throughout pregnancy, delivery, and postpartum confirms that careful clinical, biochemical, and dietetic monitoring is crucial to ensure a favourable outcomes in MMA. Personalized treatment is necessary according to the individual clinical course. Knowledge about long-term treatment and clinical outcome is important information to influence future MMA clinical guidelines.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Dieta , Suplementos Dietéticos , Femenino , Humanos , Ácido Metilmalónico , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA