Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
J Cancer Res Ther ; 20(3): 935-942, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023601

RESUMEN

PURPOSE: Objective parameters for decision on adaptive radiotherapy depend on patient, tumor and treatment related factors. Present study reports geometric uncertainties occurring during high precision radiotherapy, beam fluence analysis and serial exit dose measurement as a patient-specific tool for adaptive radiotherapy. MATERIALS AND METHODS: Serial exit dose fluence of 24 patients (at baseline and mid-treatment) undergoing IMRT/VMAT treatment were measured. Baseline and midtreatment exit dose evaluation was done using gafchromic films in predefined region of interest. Difference of volume of GTV at baseline (from simulation CT scan) and midtreatment CBCT scan was calculated (ΔGTV). RESULTS: Population based systematic errors (mm) were 4.15, 2.26, 0.88 and random errors (mm) were 2.56, 3.69, and 2.03 in mediolateral (ML), craniocaudal (CC) and anteroposterior (AP) directions respectively. Gamma pass rate reduced with incremental shift. For a 5 mm shift, maximum deviation was found in anteroposterior axis (22.16 ± 7.50) and lowest in mediolateral axis (12.85 ± 4.95). On serial measurement of exit dose fluence, tumor shrinkage significantly influenced gamma pass rate. The mean gamma pass rate was significantly different between groups with 50% shrinkage of tumor volume (86.36 vs 96.24, P = 0.008, on multivariate analysis P = 0.026). CONCLUSION: Rapid fall of gamma pass rate was observed for set up error of ≥3 mm. Serial measurement of exit dose fluence by radiochromic film is a feasible method of exit dose comparison in IMRT/VMAT, where EPID dosimetry is not available with linear accelerator configuration. Our study suggests that there is a significant difference between gamma pass rates of baseline and mid treatment exit dose fluence with greater than 50% tumor shrinkage.


Asunto(s)
Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Prospectivos , Neoplasias/radioterapia , Neoplasias/patología , Carga Tumoral , Errores de Configuración en Radioterapia , Masculino , Tomografía Computarizada de Haz Cónico/métodos
2.
Phys Med ; 123: 103396, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943799

RESUMEN

PURPOSE: Respiratory motion and patient setup error both contribute to the dosimetric uncertainty in radiotherapy of lung tumors. Managing these uncertainties for free-breathing treatments is usually done by margin-based approaches or robust optimization. However, breathing motion can be irregular and concerns have been raised for the robustness of the treatment plans. We have previously reported the dosimetric effects of the respiratory motion, without setup uncertainties, in lung tumor photon radiotherapy using free-breathing images. In this study, we include setup uncertainty. METHODS: Tumor positions from cine-CT images acquired in free-breathing were combined with per-fraction patient shifts to simulate treatment scenarios. A total of 14 patients with 300 tumor positions were used to evaluate treatment plans based on 4DCT. Four planning methods aiming at delivering 54 Gy as median tumor dose in three fractions were compared. The planning methods were denoted robust 4D (RB4), isodose to the PTV with a central higher dose (ISD), the ISD method normalized to the intended median tumor dose (IRN) and homogeneous fluence to the PTV (FLU). RESULTS: For all planning methods 95% of the intended dose was achieved with at least 90% probability with RB4 and FLU having equal CTV D50% values at this probability. FLU gave the most consistent results in terms of CTV D50% spread and dose homogeneity. CONCLUSIONS: Despite the simulated patient shifts and tumor motions being larger than observed in the 4DCTs the dosimetric impact was suggested to be small. RB4 or FLU are recommended for the planning of free-breathing treatments.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Fotones , Planificación de la Radioterapia Asistida por Computador , Respiración , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Incertidumbre , Planificación de la Radioterapia Asistida por Computador/métodos , Fotones/uso terapéutico , Movimiento , Dosificación Radioterapéutica , Errores de Configuración en Radioterapia/prevención & control , Radiometría
3.
Cancer Radiother ; 28(3): 229-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38871604

RESUMEN

PURPOSE: The main objective of this study was to assess inter- and intrafraction errors for two patient immobilisation devices in the context of lung stereotactic body radiation therapy: a vacuum cushion and a simple arm support. MATERIALS AND METHODS: Twenty patients who were treated with lung stereotactic body radiation therapy in supine position with arms above their head were included in the study. Ten patients were setup in a vacuum cushion (Bluebag™, Elekta) and ten other patients with a simple arm support (Posirest™, Civco). A pretreatment four-dimensional cone-beam computed tomography and a post-treatment three-dimensional cone-beam computed tomography were acquired to compare positioning and immobilisation accuracy. Based on a rigid registration with the planning computed tomography on the spine at the target level, translational and rotational errors were reported. RESULTS: The median number of fractions per treatment was 5 (range: 3-10). Mean interfraction errors based on 112 four-dimensional cone-beam computed tomographies were similar for both setups with deviations less than or equal to 1.3mm in lateral and vertical direction and 1.2° in roll and yaw. For longitudinal translational errors, mean interfraction errors were 0.7mm with vacuum cushion and -3.9mm with arm support. Based on 111 three-dimensional cone-beam computed tomographies, mean lateral, longitudinal and vertical intrafraction errors were -0.1mm, -0.2mm and 0.0mm respectively (SD: 1.0, 1.2 and 1.0mm respectively) for the patients setup with vacuum cushion, and mean vertical, longitudinal and lateral intrafraction errors were -0.3mm, -0.7mm and 0.1mm respectively (SD: 2.3, 1.8 and 1.4mm respectively) for the patients setup with arm support. Intrafraction errors means were not statistically different between both positions but standard deviations were statistically larger with arm support. CONCLUSION: The results of our study showed similar inter and intrafraction mean deviations between both positioning but a large variability in intrafraction observed with arm support suggested a more accurate immobilization with vacuum cushion.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Inmovilización , Neoplasias Pulmonares , Posicionamiento del Paciente , Radiocirugia , Humanos , Radiocirugia/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Inmovilización/métodos , Inmovilización/instrumentación , Estudios Prospectivos , Anciano , Femenino , Masculino , Persona de Mediana Edad , Tomografía Computarizada de Haz Cónico/métodos , Anciano de 80 o más Años , Errores de Configuración en Radioterapia/prevención & control , Fraccionamiento de la Dosis de Radiación , Posición Supina , Tomografía Computarizada Cuatridimensional/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Vacio
4.
Radiol Phys Technol ; 17(2): 569-577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38668937

RESUMEN

This study aimed to assess the feasibility of a skin marker-less patient setup using a surface-guided radiotherapy (SGRT) system for extremity radiotherapy. Twenty-five patients who underwent radiotherapy to the extremities were included in this retrospective study. The first group consisted of 10 patients and underwent a traditional setup procedure using skin marks and lasers. The second group comprised 15 patients and had a skin marker-less setup procedure that used an SGRT system only. To compare the two setup procedures for setup accuracy, the mean 3D vector shift magnitude was 0.9 mm for the traditional setup procedure and 0.5 mm for the skin marker-less setup procedure (p < 0.01). In addition, SGRT systems have been suggested to improve the accuracy and reproducibility of patient setups and consistently reduce interfractional setup errors. These results indicate that a skin marker-less patient setup procedure using an SGRT system is useful for extremity irradiation.


Asunto(s)
Extremidades , Rayos Láser , Radioterapia Guiada por Imagen , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Radioterapia Guiada por Imagen/métodos , Estudios Retrospectivos , Adulto , Piel/efectos de la radiación , Anciano de 80 o más Años , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control
5.
J Appl Clin Med Phys ; 25(7): e14317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38439583

RESUMEN

PURPOSE: Patient setup errors have been a primary concern impacting the dose delivery accuracy in radiation therapy. A robust treatment plan might mitigate the effects of patient setup errors. In this reported study, we aimed to evaluate the impact of translational and rotational errors on the robustness of linac-based, single-isocenter, coplanar, and non-coplanar volumetric modulated arc therapy treatment plans for multiple brain metastases. METHODS: Fifteen patients were retrospectively selected for this study with a combined total of 49 gross tumor volumes (GTVs). Single-isocenter coplanar and non-coplanar plans were generated first with a prescribed dose of 40 Gy in 5 fractions or 42 Gy in 7 fractions to cover 95% of planning target volume (PTV). Next, four setup errors (+1  and +2 mm translation, and +1° and +2° rotation) were applied individually to generate modified plans. Different plan quality evaluation metrics were compared between coplanar and non-coplanar plans. 3D gamma analysis (3%/2 mm) was performed to compare the modified plans (+2 mm and +2° only) and the original plans. Paired t-test was conducted for statistical analysis. RESULTS: After applying setup errors, variations of all plan evaluation metrics were similar (p > 0.05). The worst case for V100% to GTV was 92.07% ± 6.13% in the case of +2 mm translational error. 3D gamma pass rates were > 90% for both coplanar (+2 mm and +2°) and the +2 mm non-coplanar groups but was 87.40% ± 6.89% for the +2° non-coplanar group. CONCLUSION: Translational errors have a greater impact on PTV and GTV dose coverage for both planning methods. Rotational errors have a greater negative impact on gamma pass rates of non-coplanar plans. Plan evaluation metrics after applying setup errors showed that both coplanar and non-coplanar plans were robust and clinically acceptable.


Asunto(s)
Neoplasias Encefálicas , Órganos en Riesgo , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Radioterapia de Intensidad Modulada/métodos , Errores de Configuración en Radioterapia/prevención & control , Estudios Retrospectivos , Aceleradores de Partículas/instrumentación , Órganos en Riesgo/efectos de la radiación , Pronóstico , Posicionamiento del Paciente
6.
J Appl Clin Med Phys ; 25(7): e14319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522035

RESUMEN

BACKGROUND AND PURPOSE: By employing three surface-guided radiotherapy (SGRT)-assisted positioning methods, we conducted a prospective study of patients undergoing SGRT-based deep inspiration breath-hold (DIBH) radiotherapy using a Sentine/Catalys system. The aim of this study was to optimize the initial positioning workflow of SGRT-DIBH radiotherapy for breast cancer. MATERIALS AND METHODS: A total of 124 patients were divided into three groups to conduct a prospective comparative study of the setup accuracy and efficiency for the daily initial setup of SGRT-DIBH breast radiotherapy. Group A was subjected to skin marker plus SGRT verification, Group B underwent SGRT optical feedback plus auto-positioning, and Group C was subjected to skin marker plus SGRT auto-positioning. We evaluated setup accuracy and efficiency using cone-beam computed tomography (CBCT) verification data and the total setup time. RESULTS: In groups A, B, and C, the mean and standard deviation of the translational setup-error vectors were small, with the highest values of the three directions observed in group A (2.4 ± 1.6, 2.9 ± 1.8, and 2.8 ± 2.1 mm). The rotational vectors in group B (1.8 ± 0.7°, 2.1 ± 0.8°, and 1.8 ± 0.7°) were significantly larger than those in groups A and C, and the Group C setup required the shortest amount of time, at 1.5 ± 0.3 min, while that of Group B took the longest time, at 2.6 ± 0.9 min. CONCLUSION: SGRT one-key calibration was found to be more suitable when followed by skin marker/tattoo and in-room laser positioning, establishing it as an optimal daily initial set-up protocol for breast DIBH radiotherapy. This modality also proved to be suitable for free-breathing breast cancer radiotherapy, and its widespread clinical use is recommended.


Asunto(s)
Neoplasias de la Mama , Contencion de la Respiración , Tomografía Computarizada de Haz Cónico , Posicionamiento del Paciente , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Prospectivos , Tomografía Computarizada de Haz Cónico/métodos , Persona de Mediana Edad , Radioterapia de Intensidad Modulada/métodos , Anciano , Radioterapia Guiada por Imagen/métodos , Errores de Configuración en Radioterapia/prevención & control , Adulto , Pronóstico , Marcadores Fiduciales , Órganos en Riesgo/efectos de la radiación
7.
J Appl Clin Med Phys ; 25(6): e14327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488663

RESUMEN

PURPOSE: This study aimed to develop a hybrid multi-channel network to detect multileaf collimator (MLC) positional errors using dose difference (DD) maps and gamma maps generated from low-resolution detectors in patient-specific quality assurance (QA) for Intensity Modulated Radiation Therapy (IMRT). METHODS: A total of 68 plans with 358 beams of IMRT were included in this study. The MLC leaf positions of all control points in the original IMRT plans were modified to simulate four types of errors: shift error, opening error, closing error, and random error. These modified plans were imported into the treatment planning system (TPS) to calculate the predicted dose, while the PTW seven29 phantom was utilized to obtain the measured dose distributions. Based on the measured and predicted dose, DD maps and gamma maps, both with and without errors, were generated, resulting in a dataset with 3222 samples. The network's performance was evaluated using various metrics, including accuracy, sensitivity, specificity, precision, F1-score, ROC curves, and normalized confusion matrix. Besides, other baseline methods, such as single-channel hybrid network, ResNet-18, and Swin-Transformer, were also evaluated as a comparison. RESULTS: The experimental results showed that the multi-channel hybrid network outperformed other methods, demonstrating higher average precision, accuracy, sensitivity, specificity, and F1-scores, with values of 0.87, 0.89, 0.85, 0.97, and 0.85, respectively. The multi-channel hybrid network also achieved higher AUC values in the random errors (0.964) and the error-free (0.946) categories. Although the average accuracy of the multi-channel hybrid network was only marginally better than that of ResNet-18 and Swin Transformer, it significantly outperformed them regarding precision in the error-free category. CONCLUSION: The proposed multi-channel hybrid network exhibits a high level of accuracy in identifying MLC errors using low-resolution detectors. The method offers an effective and reliable solution for promoting quality and safety of IMRT QA.


Asunto(s)
Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Órganos en Riesgo/efectos de la radiación , Neoplasias/radioterapia , Errores de Configuración en Radioterapia/prevención & control
8.
Radiol Phys Technol ; 17(2): 527-535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526690

RESUMEN

This study analyse setup time (ST) and frequency of on-board imaging for stereotactic abdomen (liver, stomach), lung, and spine radiotherapy in the absence of automatic rotational correction. Total 53 stereotactic body radiotherapy (SBRT) patients, 28 of abdomen, 19 lung, and 6 spine treated for 230 sessions in O-ring gantry accelerator were evaluated for ST analysis. The mean setup time for all patients, abdomen, lung, and spine cases were 7.7 ± 7.4 min, 9.2 ± 9.2 min, 6.3 ± 4.1 min, and 5.5 ± 3.3 min, respectively. Median number CBCT was 2. 96% of cases had a CBCT between 1 and 3, and 9 (4%) had ≥ 4 CBCTs. Overall, 38.1%, 35.5%, 22.1%, 2.2%, and 2.2% of setup time fall into window of 0-5 min, 5-10 min, 10-20 min, 20-30 min, and > 30 min. Most difficult challenge is to negotiate with unknown rotational errors. It will be easy to dealt with them without automatic rotational correction if values are known.


Asunto(s)
Aceleradores de Partículas , Radiocirugia , Radiocirugia/métodos , Radiocirugia/instrumentación , Humanos , Factores de Tiempo , Rotación , Tomografía Computarizada de Haz Cónico , Errores de Configuración en Radioterapia/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos
9.
J Appl Clin Med Phys ; 25(6): e14271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38273673

RESUMEN

PURPOSE: The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS: The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS: The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION: With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.


Asunto(s)
Contencion de la Respiración , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias de Mama Unilaterales , Humanos , Femenino , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Mama Unilaterales/radioterapia , Errores de Configuración en Radioterapia/prevención & control , Radioterapia Guiada por Imagen/métodos , Órganos en Riesgo/efectos de la radiación , Persona de Mediana Edad , Neoplasias de la Mama/radioterapia , Pronóstico
10.
Int J Radiat Oncol Biol Phys ; 119(3): 968-977, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284961

RESUMEN

PURPOSE: Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with wish-list-based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT plans for patients with head and neck cancer. METHODS AND MATERIALS: Thirty-three patients with head and neck cancer were retrospectively included. All patients were previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425). Plans had a 4-beam field configuration and were generated with scenario-based robust optimization (21 scenarios, 3-mm setup error, and ±3% density uncertainty for the CTVs). Three clinical plans were used to configure the Erasmus-iCycle wish-list for automated generation of robust IMPT plans for the other 30 included patients, in line with clinical planning requirements. Automatically and manually generated IMPT plans were compared for (robust) target coverage, organ-at-risk (OAR) doses, and normal tissue complication probabilities (NTCP). No manual fine-tuning of automatically generated plans was performed. RESULTS: For all automatically generated plans, voxel-wise minimum D98% values for the CTVs were within clinical constraints and similar to manual plans. All investigated OAR parameters were favorable in the automatically generated plans (all P < .001). Median reductions in mean dose to OARs went up to 667 cGy for the inferior pharyngeal constrictor muscle, and median reductions in D0.03cm3 in serial OARs ranged up to 1795 cGy for the spinal cord surface. The observed lower mean dose in parallel OARs resulted in statistically significant lower NTCP for xerostomia (grade ≥2: 34.4% vs 38.0%; grade ≥3: 9.0% vs 10.2%) and dysphagia (grade ≥2: 11.8% vs 15.0%; grade ≥3: 1.8% vs 2.8%). CONCLUSIONS: Erasmus-iCycle was able to produce IMPT dose distributions fully automatically with similar (robust) target coverage and improved OAR doses and NTCPs compared with clinical manual planning, with negligible hands-on planning workload.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Estudios Retrospectivos , Terapia de Protones/métodos , Automatización , Masculino , Errores de Configuración en Radioterapia/prevención & control
11.
Strahlenther Onkol ; 200(1): 60-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971534

RESUMEN

PURPOSE: The objective of this work is to estimate the patient positioning accuracy of a surface-guided radiation therapy (SGRT) system using an optical surface scanner compared to an X­ray-based imaging system (IGRT) with respect to their impact on intracranial stereotactic radiotherapy (SRT) and intracranial stereotactic radiosurgery (SRS). METHODS: Patient positioning data, both acquired with SGRT and IGRT systems at the same linacs, serve as a basis for determination of positioning accuracy. A total of 35 patients with two different open face masks (578 datasets) were positioned using X­ray stereoscopic imaging and the patient position inside the open face mask was recorded using SGRT. The measurement accuracy of the SGRT system (in a "standard" and an SRS mode with higher resolution) was evaluated using both IGRT and SGRT patient positioning datasets taking into account the measurement errors of the X­ray system. Based on these clinically measured datasets, the positioning accuracy was estimated using Monte Carlo (MC) simulations. The relevant evaluation criterion, as standard of practice in cranial SRT, was the 95th percentile. RESULTS: The interfractional measurement displacement vector of the SGRT system, σSGRT, in high resolution mode was estimated at 2.5 mm (68th percentile) and 5 mm (95th percentile). If the standard resolution was used, σSGRT increased by about 20%. The standard deviation of the axis-related σSGRT of the SGRT system ranged between 1.5 and 1.8 mm interfractionally and 0.5 and 1.0 mm intrafractionally. The magnitude of σSGRT is mainly due to the principle of patient surface scanning and not due to technical limitations or vendor-specific issues in software or hardware. Based on the resulting σSGRT, MC simulations served as a measure for the positioning accuracy for non-coplanar couch rotations. If an SGRT system is used as the only patient positioning device in non-coplanar fields, interfractional positioning errors of up to 6 mm and intrafractional errors of up to 5 mm cannot be ruled out. In contrast, MC simulations resulted in a positioning error of 1.6 mm (95th percentile) using the IGRT system. The cause of positioning errors in the SGRT system is mainly a change in the facial surface relative to a defined point in the brain. CONCLUSION: In order to achieve the necessary geometric accuracy in cranial stereotactic radiotherapy, use of an X­ray-based IGRT system, especially when treating with non-coplanar couch angles, is highly recommended.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Posicionamiento del Paciente/métodos , Rayos X , Radiografía , Radioterapia Guiada por Imagen/métodos , Imagenología Tridimensional/métodos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control
12.
J Appl Clin Med Phys ; 25(3): e14195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37915300

RESUMEN

OBJECTIVE: Surface-guided radiation therapy (SGRT, AlignRT) was used to analyze motion during stereotactic body radiotherapy (SBRT) in lung cancer patients and to explore the margin of the planning target volume (PTV). METHODS: The residual errors of the AlignRT were evaluated based on grayscale cone-beam computed tomography registration results before each treatment. AlignRT log file was used to analyze the correlation between the frequency and longest duration of errors larger than 2 mm and lasting longer than 2 s and maximum error with age and treatment duration. The displacement value at the end of treatment, the average displacement value, and the 95% probability density displacement interval were defined as intrafraction errors, and PTV1, PTV2, PTV3 were calculated by Van Herk formula or Z score analysis. Organ dosimetric differences were compared after the experience-based margin was replaced with PTV3. RESULTS: The interfraction residual errors were Vrt0 , 0.06 ± 0.18 cm; Lng0 , -0.03 ± 0.19 cm; Lat0 , 0.02 ± 0.15 cm; Pitch0 , 0.23 ± 0.7°; Roll0 , 0.1 ± 0.69°; Rtn0 , -0.02 ± 0.79°. The frequency, longest duration and maximum error in vertical direction were correlated with treatment duration (r = 0.404, 0.353, 0.283, p < 0.05, respectively). In the longitudinal direction, the frequency was correlated with age and treatment duration (r = 0.376, 0.283, p < 0.05, respectively), maximum error was correlated with age (r = 0.4, P < 0.05). Vertical, longitudinal, lateral margins of PTV1, PTV2, PTV3 were 2 mm, 4 mm, 2 mm; 2 mm, 2 mm, 2 mm, 3 mm, 5 mm, 3 mm, respectively. After replacing the original PTV, mean lung dose (MLD), 2-cm3 chest wall dose (CD), lung V20 decreased by 0.2 Gy, 2.1 Gy, 0.5%, respectively (p < 0.05). CONCLUSION: AlignRT can be used for interfraction setup and monitoring intrafraction motion. It is more reasonable to use upper and lower limits of the 95% probability density interval as an intrafraction error.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Pulmón , Tomografía Computarizada de Haz Cónico , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control
13.
Sci Rep ; 13(1): 17018, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813917

RESUMEN

The goal of the study was to evaluate the inter- and intrafractional patient setup accuracy of target volumes located in the head, thoracic, abdominal, and pelvic regions when using SGRT, by comparing it with that of laser alignment using patient skin marks, and to calculate the corresponding setup margins. A total of 2303 radiotherapy fractions of 183 patients were analyzed. All patients received daily kilovoltage cone-beam computed tomography scans (kV-CBCT) for online verification. From November 2019 until September 2020, patient setup was performed using laser alignment with patient skin marks, and since October 2020, using SGRT. The setup accuracy was measured by the six degrees of freedom (6DOF) corrections based on the kV-CBCT. The corresponding setup margins were calculated using the van Herk formula. Analysis of variance (ANOVA) was used to evaluate the impact of multiple factors on the setup accuracy. The inter-fractional patient setup accuracy was significantly better using SGRT compared to laser alignment with skin marks. The mean three-dimensional vector of the translational setup deviation of tumors located in the thorax, abdomen, and pelvis using SGRT was 3.6 mm (95% confidence interval (CI) 3.3 mm to 3.9 mm) and 4.5 mm using laser alignment with skin marks (95% CI 3.9 mm to 5.2 mm; p = 0.001). Calculation of setup margins for the combined inter- and intra-fractional setup error revealed similar setup margins using SGRT and kV-CBCT once a week compared to laser alignment with skin marks and kV-CBCT every other day. Furthermore, comparable setup margins were found for open-face thermoplastic masks with AlignRT compared to closed-face thermoplastic masks with laser alignment and mask marks. SGRT opens the possibility to reduce the number of CBCTs while maintaining sufficient setup accuracy. The advantage is a reduction of imaging dose and overall treatment time. Open-face thermoplastic masks may be used instead of closed-face thermoplastic masks to increase the patient's comfort.


Asunto(s)
Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Posicionamiento del Paciente/métodos , Errores de Configuración en Radioterapia/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos , Tórax/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Abdomen/diagnóstico por imagen , Pelvis/diagnóstico por imagen
14.
Phys Med ; 110: 102605, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167776

RESUMEN

PURPOSE: Quantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. METHODS: Consecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. RESULTS: 6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. CONCLUSION: The errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia Guiada por Imagen/métodos , Movimiento (Física) , Errores de Configuración en Radioterapia
15.
J Appl Clin Med Phys ; 24(7): e14052, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37254709

RESUMEN

BACKGROUND: Dry eye syndrome has been recently reported in patients who underwent whole brain radiotherapy (WBRT). WBRT based on a couch with three-degrees of freedom (3D) can occasionally be performed in which the rotational head motion is not corrected. This study assessed the dependency of the rotational errors on the mask and the dose variation of the lens and lacrimal gland in WBRT patients. METHODS: Translational and rotational setup errors were obtained at the first treatment with cone-beam CT (CBCT) for patients under WBRT and frameless stereotactic radiosurgery (SRS) (n = 20 each) immobilized using a conventional WB mask and an SRS mask with a bite block, respectively. For the CT sets of SRS cases, WBRT plans were generated for the study. To simulate the rotational error, rotated CT images were created with each rotational error, on which initial WBRT plans were copied and doses were recalculated. The lens and lacrimal gland doses with and without rotation errors were compared. RESULTS: Despite similar translational setup errors for the two masks, the SRS mask showed a dramatic reduction in rotational errors compared to those of the WB mask. The errors varied within -2.9° to 2.9° and -1.2° to 0.7° for the WB and SRS masks, respectively. Accordingly, the SRS mask confined the change in the maximum lens dose, mean dose of the lacrimal gland, and lacrimal volume receiving 15 Gy to one-third of those using the WB mask. CONCLUSION: When the six-degrees of freedom (6D) couch is not available, the frameless SRS mask is beneficial to WBRT for the faithful treatment as it was planned.


Asunto(s)
Neoplasias Encefálicas , Aparato Lagrimal , Radiocirugia , Humanos , Errores de Configuración en Radioterapia , Rotación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Encéfalo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Tomografía Computarizada de Haz Cónico/métodos
16.
Technol Cancer Res Treat ; 22: 15330338231168763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37050884

RESUMEN

Objective: To compare the 6-dimensional errors of different immobilization devices and body regions based on 3-dimensional cone beam computed tomography for image-guided radiotherapy and to further quantitatively evaluate the impact of rotational corrections on translational shifts and dose distribution based on anthropomorphic phantoms. Materials and Methods: Two hundred ninety patients with cone beam computed tomographies from 3835 fractions were retrospectively analyzed for brain, head & neck, chest, abdomen, pelvis, and breast cases. A phantom experiment was conducted to investigate the impact of rotational errors on translational shifts using cone beam computed tomography and the registration system. For the dosimetry study, pitch rotations were simulated by adjusting the breast bracket by ±2.5°. Roll and yaw rotations were simulated by rotating the gantry and couch in the planning system by ±3.0°, respectively. The original plan for the breast region was designed in the computed tomography image space without rotation. With the same planning parameters, the original plan was transplanted into the image space with different rotations for dose recalculation. The effect of these errors on the breast target and organs at risk was assessed by dose-volume histograms. Results: Most of the mean rotational errors in the breast region were >1°. A single uncorrected yaw of 3° caused a change of 2.9 mm in longitudinal translation. A phantom study for the breast region demonstrated that when the pitch rotations were -2.5° and 2.5° and roll and yaw were both 3°, the reductions in the planning target volumes-V50 Gy were 20.07% and 29.58% of the original values, respectively. When the pitch rotation was +2.5°, the left lung V5 Gy and heart Dmean were 7.49% and 165.76 Gy larger, respectively, than the original values. Conclusions: Uncorrected rotations may cause changes in the values and directions of translational shifts. Rotational corrections may improve the patient setup and dose distribution accuracy.


Asunto(s)
Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada por Rayos X/métodos , Errores de Configuración en Radioterapia/prevención & control
17.
Technol Cancer Res Treat ; 22: 15330338231169601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37078143

RESUMEN

BACKGROUND: To analyze the relationship between the rotational and residual setup errors and the dose deviation on nasopharyngeal carcinoma (NPC) treated by helical tomotherapy (HT). METHODS: From 25 July 2017 to 20 August 2019, 16 treated NPC patients were enrolled in the study. These patients were scanned with full target range megavoltage computed tomography (MVCT) every other day. Adaptive radiotherapy function application software MIM7.1.3 were used to accumulate the actual dose. The dose deviation with the initial plan dose of the patients' target and organs at risk (OAR) were compared, and the correlation between the dose change and the setup errors (rotational setup errors and neck residual setup error) was analyzed. RESULTS: Translational setup errors increased farther away from the head. Statistically significant difference among 3 groups was achieved in the directions of left-right (P < .001) and anteroposterior (P < .001) by analysis of variance test. Compared with the initial plan dose, the actual accumulated dose of the target area decreased with the actual exposure dose of the OAR increased. However, most of the dosimetric parameters differed by less than 5%. No correlation was found between dose deviation values and the translational setup errors of target. However, sagittal rotational setup errors (pitch) had a positive relationship (P < .05) with the avearge dose of PTVnd (L) (r = 0.885), PTVnd(R) (r = 0.547) PTV1(r = 0.633) and PTV2(r = 0.584). Transverse rotational setup errors (roll) had a positive relationship (P < .05) with the avearge dose of PTVnd(R) (r = 0.593), PTV1(r = 0.505) and PTV2(r = 0.662). CONCLUSIONS: Dose deviation between the actual accumulated and initial plan is not negligible, but most indicators difference is less than 5%, NPC patients treated by HT with MVCT correction setup errors every other day did not need adaptive radiotherapy model unless got rapid tumor shrinkage or weight loss. Moreover, to minimize the dose deviation, more attention should be paid to the reduction of pitch, roll, and residual error of cervical vertebrae during body positioning.


Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia Conformacional , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Carcinoma Nasofaríngeo/radioterapia , Radioterapia Conformacional/métodos , Dosificación Radioterapéutica , Errores de Configuración en Radioterapia/prevención & control , Neoplasias Nasofaríngeas/radioterapia
18.
Phys Med Biol ; 68(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36546347

RESUMEN

Objective. Proton dosimetric uncertainties resulting from the patient's daily setup errors in rotational directions exist even with advanced image-guided radiotherapy techniques. Thus, we developed a new rotational robust optimization SPArc algorithm (SPArcrot) to mitigate the dosimetric impact of the rotational setup error in Raystation ver. 6.02 (RaySearch Laboratory AB, Stockholm, Sweden).Approach.The initial planning CT was rotated ±5° simulating the worst-case setup error in the roll direction. The SPArcrotuses a multi-CT robust optimization framework by taking into account of such rotational setup errors. Five cases representing different disease sites were evaluated. Both SPArcoriginaland SPArcrotplans were generated using the same translational robust optimized parameters. To quantitatively investigate the mitigation effect from the rotational setup errors, all plans were recalculated using a series of pseudo-CT with rotational setup error (±1°/±2°/±3°/±5°). Dosimetric metrics such as D98% of CTV, and 3D gamma analysis were used to assess the dose distribution changes in the target and OARs.Main results.The magnitudes of dosimetric changes in the targets due to rotational setup error were significantly reduced by the SPArcrotcompared to SPArc in all cases. The uncertainties of the max dose to the OARs, such as brainstem, spinal cord and esophagus were significantly reduced using SPArcrot. The uncertainties of the mean dose to the OARs such as liver and oral cavity, parotid were comparable between the two planning techniques. The gamma passing rate (3%/3 mm) was significantly improved for CTV of all tumor sites through SPArcrot.Significance.Rotational setup error is one of the major issues which could lead to significant dose perturbations. SPArcrotplanning approach can consider such rotational error from patient setup or gantry rotation error by effectively mitigating the dose uncertainties to the target and in the adjunct series OARs.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia , Radioterapia de Intensidad Modulada/métodos , Terapia de Protones/métodos , Osteonectina
19.
Radiother Oncol ; 176: 53-58, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36184998

RESUMEN

PURPOSE: Retrospective studies have identified a link between the average set-up error of lung cancer patients treated with image-guided radiotherapy (IGRT) and survival. The IGRT protocol was subsequently changed to reduce the action threshold. In this study, we use a Bayesian approach to evaluate the clinical impact of this change to practice using routine 'real-world' patient data. METHODS AND MATERIALS: Two cohorts of NSCLC patients treated with IGRT were compared: pre-protocol change (N = 780, 5 mm action threshold) and post-protocol change (N = 411, 2 mm action threshold). Survival models were fitted to each cohort and changes in the hazard ratios (HR) associated with residual set-up errors was assessed. The influence of using an uninformative and a skeptical prior in the model was investigated. RESULTS: Following the reduction of the action threshold, the HR for residual set-up error towards the heart was reduced by up to 10%. Median patient survival increased for patients with set-up errors towards the heart, and remained similar for patients with set-up errors away from the heart. Depending on the prior used, a residual hazard ratio may remain. CONCLUSIONS: Our analysis found a reduced hazard of death and increased survival for patients with residual set-up errors towards versus away from the heart post-protocol change. This study demonstrates the value of a Bayesian approach in the assessment of technical changes in radiotherapy practice and supports the consideration of adopting this approach in further prospective evaluations of changes to clinical practice.


Asunto(s)
Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Teorema de Bayes , Estudios Retrospectivos , Radioterapia Guiada por Imagen/métodos , Errores de Configuración en Radioterapia , Neoplasias Pulmonares/radioterapia
20.
J Appl Clin Med Phys ; 23(11): e13804, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36210179

RESUMEN

BACKGROUND: Spine stereotactic body radiation therapy (SBRT) uses highly conformal dose distributions and sharp dose gradients to cover targets in proximity to the spinal cord or cauda equina, which requires precise patient positioning and immobilization to deliver safe treatments. AIMS: Given some limitations with the BodyFIX system in our practice, we sought to evaluate the accuracy and efficiency of the Klarity SBRT patient immobilization system in comparison to the BodyFIX system. METHODS: Twenty-three patients with 26 metastatic spinal lesions (78 fractions) were enrolled in this prospective observational study with one of two systems - BodyFIX (n = 11) or Klarity (n = 12). All patients were initially set up to external marks and positioned to match bony anatomy on ExacTrac images. Table corrections given by ExacTrac during setup and intrafractional monitoring and deviations from pre- and posttreatment CBCT images were analyzed. RESULTS: For initial setup accuracy, the Klarity system showed larger differences between initial skin mark alignment and the first bony alignment on ExacTrac than BodyFIX, especially in the vertical (mean [SD] of 5.7 mm [4.1 mm] for Klarity vs. 1.9 mm [1.7 mm] for BodyFIX, p-value < 0.01) and lateral (5.4 mm [5.1 mm] for Klarity vs. 3.2 mm [3.2 mm] for BodyFIX, p-value 0.02) directions. For set-up stability, no significant differences (all p-values > 0.05) were observed in the maximum magnitude of positional deviations between the two systems. For setup efficiency, Klarity system achieved desired bony alignment with similar number of setup images and similar setup time (14.4 min vs. 15.8 min, p-value = 0.41). For geometric uncertainty, systematic and random errors were found to be slightly less with Klarity than with BodyFIX based on an analytical calculation. CONCLUSION: With image-guided correction of initial alignment by external marks, the Klarity system can provide accurate and efficient patient immobilization. It can be a promising alternative to the BodyFIX system for spine SBRT while providing potential workflow benefits depending on one's practice environment.


Asunto(s)
Radiocirugia , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Inmovilización/métodos , Errores de Configuración en Radioterapia/prevención & control , Posicionamiento del Paciente/métodos , Tomografía Computarizada de Haz Cónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA