Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Exp Dermatol ; 28(4): 503-508, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-28603898

RESUMEN

While every jawed vertebrate, or its recent ancestor, possesses teeth, skin appendages are characteristic of the living clades: skin denticles (odontodes) in chondrichthyans, dermal scales in teleosts, ducted multicellular glands in amphibians, epidermal scales in squamates, feathers in birds and hair-gland complexes in mammals, all of them showing a dense periodic patterning. While the odontode origin of teleost scales is generally accepted, the origin of both feather and hair is still debated. They appear long before mammals and birds, at least in the Jurassic in mammaliaforms and in ornithodires (pterosaurs and dinosaurs), and are contemporary to scales of early squamates. Epidermal scales might have appeared several times in evolution, and basal amniotes could not have developed a scaled dry integument, as the function of hair follicle requires its association with glands. In areas such as amnion, cornea or plantar pads, the formation of feather and hair is prevented early in embryogenesis, but can be easily reverted by playing with the Wnt/BMP/Shh pathways, which both imply the plasticity and the default competence of ectoderm. Conserved ectodermal/mesenchymal signalling pathways lead to placode formation, while later the crosstalk differs, as well as the final performing tissue(s): both epidermis and dermis for teeth and odontodes, mostly dermis for teleosts scales and only epidermis for squamate scale, feather and hair. We therefore suggest that tooth, dermal scale, epidermal scale, feather and hair evolved in parallel from a shared placode/dermal cell unit, which was present in a common ancestor, an early vertebrate gnathostome with odontodes, ca. 420 million years ago.


Asunto(s)
Escamas de Animales/embriología , Evolución Biológica , Plumas/embriología , Fósiles , Cabello/embriología , Adaptación Fisiológica , Animales
2.
BMC Dev Biol ; 18(1): 8, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614958

RESUMEN

BACKGROUND: The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on "direct-developing" amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are "indirect-developing" organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. RESULTS: Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely "direct" mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. CONCLUSIONS: As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between "direct" and "indirect" developing actinopterygians using a comparison between zebrafish and A. burtoni development.


Asunto(s)
Huesos/anatomía & histología , Cíclidos/anatomía & histología , Cíclidos/embriología , Modelos Biológicos , Aletas de Animales/anatomía & histología , Aletas de Animales/embriología , Escamas de Animales/anatomía & histología , Escamas de Animales/embriología , Animales , Evolución Biológica , Desarrollo Embrionario , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA