Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Microbiol Res ; 288: 127888, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39236473

RESUMEN

2,4-dihydroxybutyric acid (DHB) and 2-keto-4-hydroxybutyrate (OHB) are non-natural molecules obtained through synthetic pathways from renewable carbon source. As they are structurally similar to lactate and pyruvate respectively, they could possibly interfere with the metabolic network of Escherichia coli. In fact, we showed that DHB can be easily oxidized by the membrane associated L and D-lactate dehydrogenases encoded by lldD, dld and ykgF into OHB, and the latter being cleaved into pyruvate and formaldehyde by several pyruvate-dependent aldolases, with YagE being the most effective. While formaldehyde was readily detoxified into formate, Escherichia coli K12 MG1655 strain failed to grow on DHB despite of the production of pyruvate. To find out the reason for this failure, we constructed a mutant strain whose growth was rendered dependent on DHB and subjected this strain to adaptive evolution. Genome sequencing of the adapted strain revealed an essential role for ygbI encoding a transcriptional repressor of the threonate operon in this DHB-dependent growth. This critical function was attributed to the derepression of ygbN encoding a putative threonate transporter, which was found to exclusively transport the D form of DHB. A subsequent laboratory evolution was carried out with E. coli K12 MG1655 deleted for ΔygbI to adapt for growth on DHB as sole carbon source. Remarkably, only two additional mutations were disclosed in the adapted strain, which were demonstrated by reverse engineering to be necessary and sufficient for robust growth on DHB. One mutation was in nanR encoding the transcription repressor of sialic acid metabolic genes, causing 140-fold increase in expression of nanA encoding N-acetyl neuraminic acid lyase, a pyruvate-dependent aldolase, and the other was in the promoter of dld leading to 14-fold increase in D-lactate dehydrogenase activity on DHB. Taken together, this work illustrates the importance of promiscuous enzymes in underground metabolism and moreover, in the frame of synthetic pathways aiming at producing non-natural products, these underground reactions could potentially penalize yield and title of these bio-based products.


Asunto(s)
Carbono , Proteínas de Escherichia coli , Escherichia coli , Carbono/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Redes y Vías Metabólicas , Operón , Hidroxibutiratos/metabolismo , Regulación Bacteriana de la Expresión Génica , Ácido Pirúvico/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/crecimiento & desarrollo , Escherichia coli K12/enzimología , Mutación , Formaldehído/metabolismo , Ácido Láctico/metabolismo
2.
Nutrients ; 16(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203813

RESUMEN

Before the absorption in the intestine, glucose encounters gut bacteria, which may serve as a barrier against hyperglycemia by metabolizing glucose. In the present study, we compared the capacity of enterobacterial strains to lower glucose levels in an in vitro model of nutrient-induced bacterial growth. Two probiotic strains, Hafnia alvei HA4597 (H. alvei) and Escherichia coli (E. coli) Nissle 1917, as well as E. coli K12, were studied. To mimic bacterial growth in the gut, a planktonic culture was supplemented twice daily by the Luria Bertani milieu with or without 0.5% glucose. Repeated nutrient provision resulted in the incremental growth of bacteria. However, in the presence of glucose, the maximal growth of both strains of E. coli but not of H. alvei was inhibited. When glucose was added to the culture medium, a continuous decrease in its concentration was observed during each feeding phase. At its highest density, H. alvei displayed more efficient glucose consumption accompanied by a more pronounced downregulation of glucose transporters' expression than E. coli K12. Thus, the study reveals that the probiotic strain H. alvei HA4597 is more resilient to maintain its growth than E. coli in the presence of 0.5% glucose accompanied by more efficient glucose consumption. This experimental approach offers a new strategy for the identification of probiotics with increased glucose metabolizing capacities potentially useful for the prevention and co-treatment of type 2 diabetes.


Asunto(s)
Glucosa , Probióticos , Glucosa/metabolismo , Escherichia coli/metabolismo , Hafnia alvei/metabolismo , Escherichia coli K12/metabolismo , Escherichia coli K12/crecimiento & desarrollo
3.
Bioresour Technol ; 411: 131189, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39127360

RESUMEN

Vanillin is an important flavouring agent applied in food, spices, pharmaceutical industries and other fields. Microbial biosynthesis of vanillin is considered a sustainable and economically feasible alternative to traditional chemical synthesis. In this study, Escherichia coli K12 MG1655 was used for the de novo synthesis of VAN by screening highly active carboxylic acid reductases and catechol O-methyltransferases, optimising the protocatechuic acid pathway, and regulating competitive metabolic pathways. Additionally, major alcohol by-products were identified and decreased by deleting three endogenous aldo-keto reductases and three alcohol dehydrogenases. Finally, a highest VAN titer was achieved to 481.2 mg/L in a 5 L fermenter from glucose. This work provides a valuable example of pathway engineering and screens several enzyme variants for the first time in E. coli.


Asunto(s)
Benzaldehídos , Escherichia coli K12 , Ingeniería Metabólica , Benzaldehídos/metabolismo , Ingeniería Metabólica/métodos , Escherichia coli K12/metabolismo , Escherichia coli K12/genética , Fermentación
4.
ACS Chem Biol ; 19(9): 1953-1962, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39172990

RESUMEN

Dysbiosis of the human gut microbiota is linked to numerous diseases. Understanding the molecular mechanisms by which microbes interact and compete with one another is required for developing successful strategies to modulate the microbiome. The natural product Microcin M (MccM) consists of a 77-residue bioactive peptide conjugated to a siderophore and is a class II microcin involved in microbial competition with an enigmatic mode-of-action. In this work, we investigated the basis for MccM activity and leveraged bioinformatics to expand the known chemical diversity of class II microcins. We applied automated fast-flow solid phase peptide synthesis coupled with chemoenzymatic chemistry to acquire MccM and demonstrated that its activity was bacteriostatic. We then used our synthetic molecule to ascertain that catecholate siderophore transporters in Escherichia coli K-12 are necessary for MccM import. Once inside the cell, we found that MccM treatment decreased the levels of intracellular ATP and interfered with gene expression. These effects were ameliorated in genetic mutants lacking ATP synthase or in conditions that support substrate-level phosphorylation. Further, we showed that MccM elevated the levels of reactive oxygen species within the target cell. We propose that MccM effects its bacteriostatic activity by decreasing the total energy level of the cell through inhibition of oxidative phosphorylation. Lastly, using genome mining, we bioinformatically identified 171 novel putative class II microcins. Our investigation sheds light on the natural processes involved in microbial competition and provides inspiration, in the form of new molecules, for future therapeutic endeavors.


Asunto(s)
Bacteriocinas , Fosforilación Oxidativa , Bacteriocinas/farmacología , Bacteriocinas/química , Bacteriocinas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/metabolismo , Escherichia coli K12/genética
5.
mSystems ; 9(8): e0075024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39023255

RESUMEN

Bacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied Escherichia coli strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the eut operon in E. coli K-12. The eut genotype was linked with the ethanolamine utilization phenotype using deletion and overexpression mutants. The subcellular dynamics and morphology of the E. coli Eut BMCs were characterized in cellula by fluorescence microscopy and electron (cryo)microscopy. The minimal proteome reorganization required for ethanolamine utilization and the in vivo stoichiometric composition of the Eut BMC were determined by quantitative proteomics. Finally, the first flux map connecting the Eut BMC with central metabolism in cellula was obtained by genome-scale modeling and 13C-fluxomics. Our results reveal that contrary to previous suggestions, ethanolamine serves both as a nitrogen and a carbon source in E. coli K-12, while also contributing to significant metabolic overflow. Overall, this study provides a quantitative molecular and functional understanding of the BMCs involved in ethanolamine assimilation by E. coli.IMPORTANCEThe properties of bacterial microcompartments make them an ideal tool for building orthogonal network structures with minimal interactions with native metabolic and regulatory networks. However, this requires an understanding of how BMCs work natively. In this study, we combined genetic manipulation, multi-omics, modeling, and microscopy to address this issue for Eut BMCs. We show that the Eut BMC in Escherichia coli turns ethanolamine into usable carbon and nitrogen substrates to sustain growth. These results improve our understanding of compartmentalization in a widely used bacterial chassis.


Asunto(s)
Proteínas de Escherichia coli , Etanolamina , Etanolamina/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Operón/genética , Redes y Vías Metabólicas/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteómica/métodos
6.
Methods Mol Biol ; 2819: 77-102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028503

RESUMEN

The genome of Escherichia coli K-12 is transcribed by a single species of RNA polymerase. The selectivity of transcriptional targets is determined via interaction with one of seven species of the sigma subunit and a total of approximately 300 species of transcription factor (TFs). For comprehensive identification of the regulatory targets of these two groups of regulatory proteins on the genome, we developed an in vitro approach, "Genomic SELEX" (gSELEX) screening. Here we describe a detailed protocol of the gSELEX screening system, which uses purified regulatory proteins and fragments of genomic DNA from E. coli. Moreover, we describe methods and examples of results using cell-free synthetic proteins.


Asunto(s)
Técnica SELEX de Producción de Aptámeros , Factores de Transcripción , Técnica SELEX de Producción de Aptámeros/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Genoma Bacteriano , Genómica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000123

RESUMEN

Gemcitabine (2',2'-difluoro-2'-deoxycytidine), a widely used anticancer drug, is considered a gold standard in treating aggressive pancreatic cancers. Gamma-proteobacteria that colonize the pancreatic tumors contribute to chemoresistance against gemcitabine by metabolizing the drug to a less active and deaminated form. The gemcitabine transporters of these bacteria are unknown to date. Furthermore, there is no complete knowledge of the gemcitabine transporters in Escherichia coli or any other related proteobacteria. In this study, we investigate the complement of gemcitabine transporters in E. coli K-12 and two common chemoresistance-related bacteria (Klebsiella pneumoniae and Citrobacter freundii). We found that E. coli K-12 has two high-affinity gemcitabine transporters with distinct specificity properties, namely, NupC and NupG, whereas the gemcitabine transporters of C. freundii and K. pneumoniae include the NupC and NupG orthologs, functionally indistinguishable from their counterparts, and, in K. pneumoniae, one additional NupC variant, designated KpNupC2. All these bacterial transporters have a higher affinity for gemcitabine than their human counterparts. The highest affinity (KM 2.5-3.0 µΜ) is exhibited by NupGs of the bacteria-specific nucleoside-H+ symporter (NHS) family followed by NupCs (KM 10-13 µΜ) of the concentrative nucleoside transporter (CNT) family, 15-100 times higher than the affinities reported for the human gemcitabine transporter hENT1/SLC29A1, which is primarily associated with gemcitabine uptake in the pancreatic adenocarcinoma cells. Our results offer a basis for further insight into the role of specific bacteria in drug availability within tumors and for understanding the structure-function differences of bacterial and human drug transporters.


Asunto(s)
Desoxicitidina , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Resistencia a Antineoplásicos/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/efectos de los fármacos , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Gammaproteobacteria/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistencia Bacteriana/genética , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/metabolismo
8.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975892

RESUMEN

Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
9.
PLoS Genet ; 20(6): e1011335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913742

RESUMEN

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.


Asunto(s)
Proteínas de Escherichia coli , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte Biológico/genética , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frío , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo
10.
Nat Commun ; 15(1): 4783, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839776

RESUMEN

Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. Using our approach for close-to-native E. coli sample preparation, we assess the two strains by cryo-ET and visualize their ribosomes at high resolution in situ. Upon tetracycline treatment, these exhibit virtually identical drug binding sites, yet the conformation distribution of ribosomal complexes differs. While K-12 retains ribosomes in a translation-competent state, tRNAs are lost in the vast majority of ED1a ribosomes. These structural findings together with the proteome-wide abundance and thermal stability assessments indicate that antibiotic responses are complex in cells and can differ between different strains of a single species, thus arguing that all relevant bacterial strains should be analyzed in situ when addressing antibiotic mode of action.


Asunto(s)
Antibacterianos , Escherichia coli , Ribosomas , Tetraciclina , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Tetraciclina/farmacología , Microscopía por Crioelectrón , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Humanos , Sitios de Unión , Biosíntesis de Proteínas/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo
11.
ACS Chem Biol ; 19(4): 1011-1021, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38517270

RESUMEN

Parkinson's disease (PD) etiology is associated with aggregation and accumulation of α-synuclein (α-syn) proteins in midbrain dopaminergic neurons. Emerging evidence suggests that in certain subtypes of PD, α-syn aggregates originate in the gut and subsequently spread to the brain. However, mechanisms that instigate α-syn aggregation in the gut have remained elusive. In the brain, the aggregation of α-syn is induced by oxidized dopamine. Such a mechanism has not been explored in the context of the gastrointestinal tract, a niche harboring 46% of the body's dopamine reservoirs. Here, we report that Enterobacteriaceae, a bacterial family prevalent in human gut microbiotas, induce α-syn aggregation. More specifically, our in vitro data indicate that respiration of nitrate by Escherichia coli K-12, which results in production of nitrite that mediates oxidation of Fe2+ to Fe3+, creates an oxidizing redox potential. These oxidizing conditions enabled the formation of dopamine-derived quinones and α-syn aggregates. Exposing nitrite, but not nitrate, to enteroendocrine STC-1 cells induced aggregation of α-syn that is natively expressed in these cells, which line the intestinal tract. Taken together, our findings indicate that bacterial nitrate reduction may be critical for initiating intestinal α-syn aggregation.


Asunto(s)
Escherichia coli K12 , Microbioma Gastrointestinal , Enfermedad de Parkinson , Agregado de Proteínas , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Dopamina/análogos & derivados , Escherichia coli K12/metabolismo , Redes y Vías Metabólicas , Nitratos/metabolismo , Nitritos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/microbiología , Enterobacteriaceae/metabolismo
12.
PLoS One ; 19(2): e0288526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324614

RESUMEN

It was necessary to have a tool that could predict the amount of protein and optimize the gene sequences to produce recombinant proteins efficiently. The Transim model published by Tuller et al. in 2018 can calculate the translation rate in E. coli using features on the mRNA sequence, achieving a Spearman correlation with the amount of protein per mRNA of 0.36 when tested on the dataset of operons' first genes in E. coli K-12 MG1655 genome. However, this Spearman correlation was not high, and the model did not fully consider the features of mRNA and protein sequences. Therefore, to enhance the prediction capability, our study firstly tried expanding the testing dataset, adding genes inside the operon, and using the microarray of the mRNA expression data set, thereby helping to improve the correlation of translation rate with the amount of protein with more than 0.42. Next, the applicability of 6 traditional machine learning models to calculate a "new translation rate" was examined using initiation rate and elongation rate as inputs. The result showed that the SVR algorithm had the most correlated new translation rates, with Spearman correlation improving to R = 0.6699 with protein level output and to R = 0.6536 with protein level per mRNA. Finally, the study investigated the degree of improvement when combining more features with the new translation rates. The results showed that the model's predictive ability to produce a protein per mRNA reached R = 0.6660 when using six features, while the correlation of this model's final translation rate to protein level was up to R = 0.6729. This demonstrated the model's capability to predict protein expression of a gene, rather than being limited to predicting expression by an mRNA and showed the model's potential for development into gene expression predicting tools.


Asunto(s)
Escherichia coli K12 , Escherichia coli , ARN Mensajero/genética , ARN Mensajero/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Genoma , Proteínas Recombinantes/metabolismo , Biosíntesis de Proteínas/genética
13.
Gene ; 906: 148266, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342251

RESUMEN

Studies have noted the association between Escherichia coli K-12 (E. coli K-12) and the reduction of malignancy in colorectal cancer (CRC). However, the molecular mechanisms underlying this relationship have not been thoroughly explored. The aim of this study was to identify the genes influenced by E. coli K-12 and their connection to CRC. We identified the genes affected by E. coli K-12 using the GSE50040 dataset. Additionally, we investigated the relationship between the expression of genes affected by E. coli K-12 and CRC using the cancer genome atlas data. The association between the expression of E. coli K-12-affected genes and patient prognosis was investigated using clinical data. Pathways related to CRC and E. coli K-12-related genes were analyzed using the Enrichr tool. Furthermore, we employed a protein-protein interaction (PPI) network to identify hub genes associated with both E. coli K-12 and CRC. To validate our findings, we conducted RT-qPCR analysis on CRC samples and adjacent normal tissue. The results of GSE50040 showed that E. coli K-12 could change the expression of many genes related to CRC in colorectal cell lines. The results showed that E. coli K-12 reduces the expression of several genes linked to the main pathways used by cancer cells, such as the metastasis, WNT, cell proliferation pathway, and mTORC1. It was demonstrated that elevated BGN, FJX1, and LZTS1 expression is linked to a bad prognosis in patients and that E. coli K-12 may be able to lower this expression. Also, based on the PPI network, genes such as KLF4 and CXCL3 were identified as hub genes related to genes affected by E. coli K-12. When KLF4 and CXCL3 expression levels in cancer samples were compared to nearby normal tissue, a significant change in these genes' expression levels was found in CRC. Our findings demonstrated the potential relationship between oncogene genes and genes impacted by E. coli K-12. Also, our findings demonstrated that E. coli K-12 may regulate the expression of genes linked to a high death rate. In summary, the results of this study suggest that E. coli K-12 can be regarded as a significant probiotic with the potential to mitigate the risk of CRC development.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli K12 , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Expresión Génica , Regulación Neoplásica de la Expresión Génica
14.
J Biotechnol ; 374: 80-89, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567503

RESUMEN

Although the presence of silica in many living organisms offers advanced properties including cell protection, the different in vitro attempts to build living materials in pure silica never favoured the cells viability. Thus, little attention has been paid to host-guest interactions to modify the expected biologic response. Here we report the physiological changes undergone by Escherichia coli K-12 in silica from colloidal solution to gel confinement. We show that the physiological alterations in growing cultures are not triggered by the initial oxidative Reactive Oxygen Species (ROS) response. Silica promotes the induction of alternative metabolic pathways along with an increase of growth suggesting the existence of rpoS polymorphisms. Since the functionality of hybrid materials depends on the specific biologic responses of their guests, such cell physiological adaptation opens perspectives in the design of bioactive devices attracting for a large field of sciences.


Asunto(s)
Productos Biológicos , Escherichia coli K12 , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Dióxido de Silicio , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/metabolismo , Adaptación Fisiológica
15.
Microbiol Spectr ; 11(4): e0176723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347165

RESUMEN

Many eukaryotic membrane-dependent functions are often spatially and temporally regulated by membrane microdomains (FMMs), also known as lipid rafts. These domains are enriched in polyisoprenoid lipids and scaffolding proteins belonging to the stomatin, prohibitin, flotillin, and HflK/C (SPFH) protein superfamily that was also identified in Gram-positive bacteria. In contrast, little is still known about FMMs in Gram-negative bacteria. In Escherichia coli K-12, 4 SPFH proteins, YqiK, QmcA, HflK, and HflC, were shown to localize in discrete polar or lateral inner membrane locations, raising the possibility that E. coli SPFH proteins could contribute to the assembly of inner membrane FMMs and the regulation of cellular processes. Here, we studied the determinant of the localization of QmcA and HflC and showed that FMM-associated cardiolipin lipid biosynthesis is required for their native localization pattern. Using Biolog phenotypic arrays, we showed that a mutant lacking all SPFH genes displayed increased sensitivity to aminoglycosides and oxidative stress that is due to the absence of HflKC. Our study therefore provides further insights into the contribution of SPFH proteins to stress tolerance in E. coli. IMPORTANCE Eukaryotic cells often segregate physiological processes in cholesterol-rich functional membrane microdomains. These domains are also called lipid rafts and contain proteins of the stomatin, prohibitin, flotillin, and HflK/C (SPFH) superfamily, which are also present in prokaryotes but have been mostly studied in Gram-positive bacteria. Here, we showed that the cell localization of the SPFH proteins QmcA and HflKC in the Gram-negative bacterium E. coli is altered in the absence of cardiolipin lipid synthesis. This suggests that cardiolipins contribute to E. coli membrane microdomain assembly. Using a broad phenotypic analysis, we also showed that HflKC contribute to E. coli tolerance to aminoglycosides and oxidative stress. Our study, therefore, provides new insights into the cellular processes associated with SPFH proteins in E. coli.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prohibitinas , Aminoglicósidos/farmacología , Aminoglicósidos/metabolismo , Cardiolipinas/metabolismo , Escherichia coli K12/metabolismo , Microdominios de Membrana/metabolismo , Estrés Oxidativo , Antibacterianos/farmacología , Antibacterianos/metabolismo
16.
N Biotechnol ; 76: 72-81, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37182820

RESUMEN

The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but Komagataeibacter xylinus uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of K. xylinus ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the Escherichia coli K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of K. xylinus is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.


Asunto(s)
Escherichia coli K12 , Gluconacetobacter xylinus , Manosa/metabolismo , Celulosa/química , Escherichia coli K12/metabolismo , Gluconacetobacter xylinus/genética , Gluconacetobacter xylinus/metabolismo , Glucosa/metabolismo , Carbono/metabolismo
17.
Microbiology (Reading) ; 169(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040165

RESUMEN

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for many essential metabolic processes such as amino acid biosynthesis and one carbon metabolism. 4'-deoxypyridoxine (4dPN) is a long known B6 antimetabolite but its mechanism of action was not totally clear. By exploring different conditions in which PLP metabolism is affected in the model organism Escherichia coli K12, we showed that 4dPN cannot be used as a source of vitamin B6 as previously claimed and that it is toxic in several conditions where vitamin B6 homeostasis is affected, such as in a B6 auxotroph or in a mutant lacking the recently discovered PLP homeostasis gene, yggS. In addition, we found that 4dPN sensitivity is likely the result of multiple modes of toxicity, including inhibition of PLP-dependent enzyme activity by 4'-deoxypyridoxine phosphate (4dPNP) and inhibition of cumulative pyridoxine (PN) uptake. These toxicities are largely dependent on the phosphorylation of 4dPN by pyridoxal kinase (PdxK).


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Piridoxina/metabolismo , Vitamina B 6/metabolismo , Escherichia coli K12/metabolismo , Fosfato de Piridoxal/metabolismo , Homeostasis , Vitaminas , Proteínas Portadoras , Proteínas de Escherichia coli/metabolismo
18.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902204

RESUMEN

The World Health Organization has cautioned that antimicrobial resistance (AMR) will be responsible for an estimated 10 million deaths annually by 2050. To facilitate prompt and accurate diagnosis and treatment of infectious disease, we investigated the potential of amino acids for use as indicators of bacterial growth activity by clarifying which amino acids are taken up by bacteria during the various growth phases. In addition, we examined the amino acid transport mechanisms that are employed by bacteria based on the accumulation of labeled amino acids, Na+ dependence, and inhibitory effects using a specific inhibitor of system A. We found that 3H-L-Ala accurately reflects the proliferative activity of Escherichia coli K-12 and pathogenic EC-14 in vitro. This accumulation in E. coli could be attributed to the amino acid transport systems being different from those found in human tumor cells. Moreover, biological distribution assessed in infection model mice with EC-14 using 3H-L-Ala showed that the ratio of 3H-L-Ala accumulated in infected muscle to that in control muscle was 1.20. By detecting the growth activity of bacteria in the body that occurs during the early stages of infection by nuclear imaging, such detection methods may result in expeditious diagnostic treatments for infectious diseases.


Asunto(s)
Infecciones Bacterianas , Escherichia coli K12 , Animales , Ratones , Humanos , Escherichia coli/metabolismo , Escherichia coli K12/metabolismo , Bacterias , Aminoácidos/metabolismo , Alanina/metabolismo
19.
J Bacteriol ; 205(1): e0040322, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36622229

RESUMEN

The Gram-negative outer membrane (OM) is an asymmetric bilayer with phospholipids in its inner leaflet and mainly lipopolysaccharide (LPS) in its outer leaflet and is largely impermeable to many antibiotics. In Enterobacterales (e.g., Escherichia, Salmonella, Klebsiella, and Yersinia), the outer leaflet of the OM also contains phosphoglyceride-linked enterobacterial common antigen (ECAPG). This molecule consists of the conserved ECA carbohydrate linked to diacylglycerol-phosphate (DAG-P) through a phosphodiester bond. ECAPG contributes to the OM permeability barrier and modeling suggests that it may alter the packing of LPS molecules in the OM. Here, we investigate, in Escherichia coli K-12, the reaction synthesizing ECAPG from ECA precursor linked to an isoprenoid carrier to identify the lipid donor that provides the DAG-P moiety to ECAPG. Through overexpression of phospholipid biosynthesis genes, we observed alterations expected to increase levels of phosphatidylglycerol (PG) increased the synthesis of ECAPG, whereas alterations expected to decrease levels of PG decreased the synthesis of ECAPG. We discovered depletion of PG levels in strains that could synthesize ECAPG, but not other forms of ECA, causes additional growth defects, likely due to the buildup of ECA precursor on the isoprenoid carrier inhibiting peptidoglycan biosynthesis. Our results demonstrate ECAPG can be synthesized in the absence of the other major phospholipids (phosphatidylethanolamine and cardiolipin). Overall, these results conclusively demonstrate PG is the lipid donor for the synthesis of ECAPG and provide a key insight into the reaction producing ECAPG. In addition, these results provide an interesting parallel to lipoprotein acylation, which also uses PG as its DAG donor. IMPORTANCE The Gram-negative outer membrane is a permeability barrier preventing cellular entry of antibiotics. However, outer membrane biogenesis pathways are targets for small molecule development. Here, we investigate the synthesis of a form of enterobacterial common antigen (ECA), ECAPG, found in the outer membrane of Enterobacterales (e.g., Escherichia, Salmonella, and Klebsiella). ECAPG consists of the conserved ECA carbohydrate unit linked to diacylglycerol-phosphate-ECA is a phospholipid headgroup. The details of the reaction forming this molecule from polymerized ECA precursor are unknown. We determined the lipid donor providing the phospholipid moiety is phosphatidylglycerol. Understanding the synthesis of outer membrane constituents such as ECAPG provides the opportunity for development of molecules to increase outer membrane permeability, expanding the antibiotics available to treat Gram-negative infections.


Asunto(s)
Escherichia coli K12 , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Diglicéridos/metabolismo , Fosfolípidos/metabolismo , Fosfatidilgliceroles , Escherichia coli K12/metabolismo , Escherichia coli/genética , Antígenos Bacterianos/metabolismo , Antibacterianos/metabolismo , Terpenos/metabolismo
20.
Environ Sci Pollut Res Int ; 30(5): 13702-13710, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36136186

RESUMEN

Dimethyl phthalate (DMP) is one of the most widely used plasticizers, and it is easily released into the environment, posing a threat to microbes. In this study, the impact of DMP on the uptake and metabolism of sugars in E. coli K-12 was assessed using proteomics, computational simulation analysis, transcriptome analysis, and sugar utilization experiments. DMP contamination inhibited the growth of E. coli K-12 and downregulated the expression of proteins in ATP-binding cassette (ABC) transporters and the phosphotransferase (PTS) system of E. coli K-12, which are primarily involved in the transmembrane transport of sugars. DMP formed a stable complex with sugar transporters and changed the rigidity and stability of the proteins. Furthermore, DMP treatment decreased the utilization of L-arabinose, glucose, D-xylose, and maltose. Moreover, carbon metabolism and oxidative phosphorylation were also downregulated by DMP. Our study shows that DMP reduces the uptake of sugars and ATP production and subsequently inhibits the growth of E. coli K-12.


Asunto(s)
Metabolismo Energético , Escherichia coli K12 , Proteínas de Escherichia coli , Plastificantes , Azúcares , Adenosina Trifosfato/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Azúcares/metabolismo , Plastificantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA