Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.153
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2312837121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838013

RESUMEN

Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Interferón gamma , Células TH1 , Células TH1/inmunología , Animales , Memoria Inmunológica/inmunología , Ratones , Interferón gamma/metabolismo , Interferón gamma/inmunología , Células T de Memoria/inmunología , Ratones Endogámicos C57BL , Legionella pneumophila/inmunología , Esclerosis Múltiple/inmunología , Interleucina-12/metabolismo , Interleucina-12/inmunología
2.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843296

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/inmunología , Femenino , Masculino , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Adulto , Anticuerpos Antivirales/inmunología , Persona de Mediana Edad , Reacciones Cruzadas/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Linfocitos T/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/virología , Antígenos Virales/inmunología , Carga Viral , Mononucleosis Infecciosa/inmunología , Mononucleosis Infecciosa/virología , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Inmunoglobulina G/inmunología
3.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844736

RESUMEN

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Asunto(s)
Líquido Amniótico , Células Dendríticas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Esclerosis Múltiple , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Líquido Amniótico/citología , Líquido Amniótico/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Esclerosis Múltiple/terapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Femenino , Células Madre/metabolismo , Células Madre/citología , Ratones Endogámicos C57BL
4.
Mol Biol Rep ; 51(1): 629, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717637

RESUMEN

It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B , Depleción Linfocítica , Humanos , Linfocitos B/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Depleción Linfocítica/métodos , Antígenos CD20/inmunología , Antígenos CD19/inmunología , Animales , Factor Activador de Células B/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/terapia
5.
Sci Rep ; 14(1): 11015, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744898

RESUMEN

Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system that affects mainly young people. It is believed that the autoimmune process observed in the pathogenesis of MS is influenced by a complex interaction between genetic and environmental factors, including infectious agents. The results of this study suggest the protective role of Toxoplasma gondii infections in MS. Interestingly, high Toxoplasma IgM seropositivity in MS patients receiving immunomodulatory drugs (IMDs) was identified. On the other hand, Borrelia infections seem to be positively associated with MS. Although the interpretation of our results is limited by the retrospective nature of the studies, the results strongly indicate that further experimental and clinical studies are needed to explain the role of infectious agents in the development and pathophysiological mechanisms of MS.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Esclerosis Múltiple , Toxoplasma , Toxoplasmosis , Humanos , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/microbiología , Esclerosis Múltiple/parasitología , Esclerosis Múltiple/inmunología , Toxoplasmosis/epidemiología , Toxoplasmosis/inmunología , Toxoplasmosis/complicaciones , Polonia/epidemiología , Estudios Seroepidemiológicos , Femenino , Toxoplasma/inmunología , Masculino , Adulto , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/inmunología , Borrelia burgdorferi/inmunología , Persona de Mediana Edad , Inmunoglobulina M/sangre , Estudios Retrospectivos , Adulto Joven
6.
Cells ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786021

RESUMEN

Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.


Asunto(s)
Esclerosis Múltiple , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/terapia , Animales , Antígenos/inmunología , Terapia Molecular Dirigida
7.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791391

RESUMEN

Ocrelizumab (OCR), an anti-CD20 monoclonal antibody, is approved for treating relapsing remitting (RR) and primary progressive (PP) multiple sclerosis (MS). The standard interval dosing (SID) regimen requires intravenous infusions every six months. Experience of extended dosing due to COVID-19 pandemic-related issues suggests that this strategy may provide comparable efficacy while reducing treatment burden and healthcare costs. This study aimed to evaluate clinical effectiveness, changes in B- and T-cell count, and immunoglobulin dynamics associated with extended interval dosing (EID) of ocrelizumab in a real-world setting. We retrospectively included RRMS or PPMS patients treated with OCR that had already received two OCR cycles and with at least 6 months of follow up after the last infusion. EID was defined as a ≥4 weeks delay compared to SID. Clinical outcomes were occurrence of relapses, MRI activity, 6-months confirmed disability progression (CDP) and their combination (No Evidence of Disease Activity, NEDA-3). We also evaluated changes in CD19+ B cell count, CD4+ and CD8+ T cell count, immunoglobulin titers, and occurrence of hypogammaglobulinemia (hypo-Ig). Frequency tests, multivariate regression models, and survival analysis were applied as appropriate. We analyzed data on 93 subjects (75.3% RRMS) for a total of 389 infusions (272 SID, 117 EID). Clinical and MRI activity, CDP, and NEDA 3 did not significantly differ between EID and SID. EID was associated with lower rates of B-cell depletion. T-cell dynamics and incidence of hypo-Ig were comparable following EID and SID. Hypo-IgG at index infusion was associated with further occurrence of hypo-IgG; male sex and hypo-IgM at index infusion were independently associated with hypo-IgM. In conclusion, OCR EID does not impact MS clinical and radiological outcomes, although it interferes with B-cell dynamics. These findings provide support for a tailored schedule of OCR in MS.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Humanos , Femenino , Masculino , Adulto , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Persona de Mediana Edad , Estudios Retrospectivos , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Resultado del Tratamiento , COVID-19/inmunología , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , SARS-CoV-2/inmunología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/uso terapéutico
8.
Front Immunol ; 15: 1360219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745667

RESUMEN

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Asunto(s)
Linfocitos B Reguladores , Receptor Celular 1 del Virus de la Hepatitis A , Receptores Inmunológicos , Humanos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Femenino , Masculino , Adulto , Células B de Memoria/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Citocinas/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Células Cultivadas , Diferenciación Celular/inmunología , Memoria Inmunológica
9.
Front Immunol ; 15: 1385231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745673

RESUMEN

Background: Cerebrospinal fluid (CSF) kappa free light chain (κFLC) measures gained increasing interest as diagnostic markers in multiple sclerosis (MS). However, the lack of studies comparing assay-dependent diagnostic cutoff values hinders their use in clinical practice. Additionally, the optimal κFLC parameter for identifying MS remains a subject of ongoing debate. Objectives: The aim of this study was to compare same-sample diagnostic accuracies of the κFLC index, κIgG index, CSF κFLC/IgG ratio, and isolated CSF κFLC (iCSF-κFLC) between two reference centers using different methods. Methods: Paired serum and CSF samples were analyzed for κFLC and albumin concentrations by Freelite®-Optilite (Sint-Jan Bruges hospital) and N Latex®-BNII (Ghent University hospital). Diagnostic performance to differentiate MS from controls was assessed using ROC curve analysis. Results: A total of 263 participants were included (MS, n = 80). Optimal diagnostic cutoff values for the κFLC index (Freelite®-Optilite: 7.7; N Latex®-BNII: 4.71), κIgG index (Freelite®-Optilite: 14.15, N Latex®-BNII: 12.19), and CSF κFLC/IgG ratio (Freelite®-Optilite: 2.27; N Latex®-BNII: 1.44) differed between the two methods. Sensitivities related to optimal cutoff values were 89.9% (Freelite®-Optilite) versus 94.6% (N Latex®-BNII) for the κFLC index, 91% (Freelite®-Optilite) versus 92.2% (N Latex®-BNII) for the κIgG index, and 81.3% (Freelite®-Optilite) versus 91.4% (N Latex®-BNII) for the CSF κFLC/IgG ratio. However, for iCSF-κFLC, optimal diagnostic cutoff values (0.36 mg/L) and related specificities (81.8%) were identical with a related diagnostic sensitivity of 89.9% for Freelite®-Optilite and 90.5% for N Latex®-BNII. The diagnostic performance of the κFLC index [area under the curve (AUC) Freelite®-Optilite: 0.924; N Latex®-BNII: 0.962] and κIgG index (AUC Freelite®-Optilite: 0.929; N Latex®-BNII: 0.961) was superior compared to CSF oligoclonal bands (AUC: 0.898, sensitivity: 83.8%, specificity: 95.9%). Conclusions: The κFLC index and the κIgG index seem to be excellent markers for identifying MS, irrespective of the method used for κFLC quantification. Based on the AUC, they appear to be the measures of choice. For all measures, optimal cutoff values differed between methods except for iCSF-κFLC. iCSF-κFLC might therefore serve as a method-independent, more cost-efficient, initial screening measure for MS. These findings are particularly relevant for clinical practice given the potential future implementation of intrathecal κFLC synthesis in MS diagnostic criteria and for future multicentre studies pooling data on κFLC measures.


Asunto(s)
Biomarcadores , Cadenas kappa de Inmunoglobulina , Esclerosis Múltiple , Humanos , Femenino , Cadenas kappa de Inmunoglobulina/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Masculino , Adulto , Persona de Mediana Edad , Biomarcadores/líquido cefalorraquídeo , Curva ROC , Sensibilidad y Especificidad , Reproducibilidad de los Resultados , Inmunoglobulina G/líquido cefalorraquídeo
10.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732082

RESUMEN

Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.


Asunto(s)
Sistema Nervioso Central , Homeostasis , Inmunidad Innata , Humanos , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Microglía/inmunología , Microglía/metabolismo
11.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732169

RESUMEN

Infections may affect the course of autoimmune inflammatory diseases of the central nervous system (CNS), such as multiple sclerosis (MS). Infections with lactate dehydrogenase-elevating virus (LDV) protected mice from developing experimental autoimmune encephalomyelitis (EAE), a mouse counterpart of MS. Uninfected C57BL/6 mice immunized with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) experienced paralysis and lost weight at a greater rate than mice who had previously been infected with LDV. LDV infection decreased the presentation of the MOG peptide by CD11b+CD11c+ dendritic cells (DC) to pathogenic T lymphocytes. When comparing non-infected mice to infected mice, the histopathological examination of the CNS showed more areas of demyelination and CD45+ and CD3+, but not Iba1+ cell infiltration. These results suggest that the protective effect of LDV infection against EAE development is mediated by a suppression of myelin antigen presentation by a specific DC subset to autoreactive T lymphocytes. Such a mechanism might contribute to the general suppressive effect of infections on autoimmune diseases known as the hygiene hypothesis.


Asunto(s)
Células Dendríticas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Virus Elevador de Lactato Deshidrogenasa , Ratones Endogámicos C57BL , Esclerosis Múltiple , Glicoproteína Mielina-Oligodendrócito , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Esclerosis Múltiple/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/virología , Virus Elevador de Lactato Deshidrogenasa/inmunología , Antígeno CD11b/metabolismo , Antígeno CD11b/inmunología , Presentación de Antígeno/inmunología , Femenino , Antígeno CD11c/metabolismo , Infecciones por Cardiovirus/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
Mult Scler ; 30(7): 857-867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767224

RESUMEN

BACKGROUND: Ocrelizumab (OCR) is an anti-CD20 monoclonal antibody approved for the treatment of relapsing-remitting and primary-progressive multiple sclerosis (MS). We aimed to evaluate the effectiveness of an individualized OCR extended interval dosing (EID), after switching from standard interval dosing (SID). METHODS: This was a retrospective, observational, single-centre study including MS patients regularly followed at the Neurocenter of Southern Switzerland. After a cumulative OCR dose ⩾1200 mg, stable patients were switched to EID (OCR infusions following CD19+ 27+ memory B cell repopulation). RESULTS: A total of 128 patients were included in the study, and 113 (88.3%) were switched to EID with a median interval of 9.9 (8.8-11.8) months between infusions. No clinical relapses occurred; 2 (1.8%) patients experienced disability worsening. Three (2.7%) and 2 (1.8%) patients experienced new T2 brain and spinal lesions, respectively. There was a mild decrease in IgG and IgM concentrations during both SID and EID OCR regimens (ß = -0.23, p = 0.001 and ß = -0.07, p < 0.001, respectively). CONCLUSION: Switch to personalized dosing of OCR based on CD19+ 27+ memory B cell repopulation led to a great extension of the interval between infusions, with maintained clinical and radiological efficacy. Given the potential advantages in terms of safety and health costs, EID OCR regimens should be further investigated.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Células B de Memoria , Humanos , Femenino , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Células B de Memoria/inmunología , Factores Inmunológicos/administración & dosificación , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Resultado del Tratamiento , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología
13.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791450

RESUMEN

Multiple sclerosis is a chronic immune-mediated disorder of the central nervous system with a high heterogeneity among patients. In the clinical setting, one of the main challenges is a proper and early diagnosis for the prediction of disease activity. Current diagnosis is based on the integration of clinical, imaging, and laboratory results, with the latter based on the presence of intrathecal IgG oligoclonal bands in the cerebrospinal fluid whose detection via isoelectric focusing followed by immunoblotting represents the gold standard. Intrathecal synthesis can also be evidenced by the measurement of kappa free light chains in the cerebrospinal fluid, which has reached similar diagnostic accuracy compared to that of oligoclonal bands in the identification of patients with multiple sclerosis; moreover, recent studies have also highlighted its value for early disease activity prediction. This strategy has significant advantages as compared to using oligoclonal band detection, even though some issues remain open. Here, we discuss the current methods applied for cerebrospinal fluid analysis to achieve the most accurate diagnosis and for follow-up and prognosis evaluation. In addition, we describe new promising biomarkers, currently under investigation, that could contribute both to a better diagnosis of multiple sclerosis and to its monitoring of the therapeutic treatment response.


Asunto(s)
Biomarcadores , Esclerosis Múltiple , Bandas Oligoclonales , Humanos , Bandas Oligoclonales/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/inmunología , Biomarcadores/líquido cefalorraquídeo , Pronóstico , Focalización Isoeléctrica
14.
Biomed Pharmacother ; 175: 116673, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713947

RESUMEN

Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1ß & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.


Asunto(s)
Modelos Animales de Enfermedad , Inflamasomas , Mitocondrias , Esclerosis Múltiple , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Humanos , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
16.
Nat Microbiol ; 9(6): 1540-1554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806670

RESUMEN

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.


Asunto(s)
Linfocitos B , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Esclerosis Múltiple , Humanos , Herpesvirus Humano 4/genética , Esclerosis Múltiple/virología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Citocinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Transcriptoma , Replicación Viral , Regulación Viral de la Expresión Génica , Línea Celular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Perfilación de la Expresión Génica , Adulto , Femenino , Masculino
17.
Biol Sex Differ ; 15(1): 41, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750588

RESUMEN

BACKGROUND: Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS: In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS: Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS: Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.


The immune system protects us from bacterial and viral infections and impacts the outcome of many diseases. Thus, understanding immunological processes is crucial to unravel pathogenic mechanisms and to develop new therapeutic treatment options. Sex is a biological variable affecting immunity and it is known that females and males differ in their immunological responses. Women mount stronger immune responses leading to more rapid control of infections and greater vaccine efficacy compared to men. However, this enhanced immune responsiveness is accompanied by female preponderance and susceptibility to autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (MS). MS sex ratio varies around 2:1 to 3:1 with a steadily increasing incidence in female MS patients making sex one of the top risk factors for developing MS. However, the underlying biological mechanisms including sex hormones as well as genetic and epigenetic factors and their complex interplay remain largely unknown. Here, we discovered the gene and its encoded protein CD99 to be differentially expressed between women and men with men showing increased expression on many immune cell subsets including T cells. Since T cells are key contributors to MS pathogenesis, we examined the role of CD99 on T cells of healthy individuals and MS patients. We were able to identify CD99-mediated T cell regulation, which might contribute to sex differences in MS susceptibility and incidence indicating the importance to include sex as a biological variable. Of note, these differences were not reproduced in mice showing the necessity of functional research in humans.


Asunto(s)
Antígeno 12E7 , Esclerosis Múltiple , Caracteres Sexuales , Linfocitos T , Animales , Femenino , Masculino , Humanos , Antígeno 12E7/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Linfocitos T/metabolismo , Linfocitos T/inmunología , Ratones Endogámicos C57BL , Células Jurkat , Bazo/metabolismo , Bazo/inmunología , Especificidad de la Especie , Ratones , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Noqueados , Adulto
18.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701189

RESUMEN

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Asunto(s)
Linfocitos B , Citocinas , Encefalomielitis Autoinmune Experimental , Inflamación , Esclerosis Múltiple , Fosforilación Oxidativa , Animales , Esclerosis Múltiple/inmunología , Humanos , Citocinas/inmunología , Citocinas/metabolismo , Ratones , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/inmunología , Femenino , Masculino , Ratones Endogámicos C57BL , Adulto , Adenosina Trifosfato/metabolismo , Persona de Mediana Edad
19.
Neuroscience ; 548: 9-26, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38692349

RESUMEN

Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-ß fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-ß and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.


Asunto(s)
Progresión de la Enfermedad , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Sistema Inmunológico/inmunología
20.
J Neuroimmunol ; 390: 578343, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615370

RESUMEN

Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/inmunología , Animales , Autoantígenos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA