Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.580
Filtrar
1.
PeerJ ; 12: e17307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742097

RESUMEN

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis) are native to Southern Africa but have subsequently become invasive on multiple continents-including multiple parts of North America-due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of X. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding X. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral X. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (X. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive X. laevis chemical cues. We also began experimentally testing whether T. granulosa-which produce a powerful neurotoxin tetrodotoxin (TTX)-may elicit an anti-predator response in X. laevis, that could serve to deter co-occupation. However, our short-duration experiments found that X. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that X. laevis likely poses a threat to native amphibians, and that these native species may also be particularly vulnerable to this invasive predator, compared to native predators, because toxic native newts may not limit X. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral X. laevis and provides a foundation for future experiments testing potential management techniques for X. laevis.


Asunto(s)
Señales (Psicología) , Especies Introducidas , Salamandridae , Xenopus laevis , Animales , Washingtón , Salamandridae/fisiología , Larva , Conducta Predatoria , Ranidae
2.
ScientificWorldJournal ; 2024: 5521245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708123

RESUMEN

Ethiopia is among the world's poorest nations, and its economy is growing extremely slowly; thus, the government's budget to manage environmental amenities is not always sufficient. Thus, for the provision of environmental management services such as the eradication of Prosopis juliflora, the participation of local households and other stakeholders is crucial. This study is therefore initiated with the objective of assessing rural households' demands for mitigating Prosopis juliflora invasion in the Afar Region of Ethiopia. A multistage sampling technique was employed to obtain the 313 sample rural households that were used in the analysis, and those sample households were selected randomly and independently from the Amibara and Awash Fentale districts of Afar National Regional State, Ethiopia. In doing this, a seemingly unrelated bivariate probit model was used to determine factors affecting rural households' demands for mitigating Prosopis juliflora invasion. Consequently, as per the inferential statistical results, there was a significant mean/percentage difference between willing and nonwilling households for the hypothesized variables, except for some variables such as farm experience; years lived in the area, distance from the market, and dependency ratio. Furthermore, the seemingly unrelated bivariate probit model result indicates that sex, family size, tenure security, livestock holding, frequency of extension contact, and years lived in the area were important factors influencing the willingness to participate in Prosopis juliflora management practices positively, whereas age, off-farm/nonincome, and bid value affected willingness to pay negatively and significantly. Hence, to improve the participation level of households, policymakers should target these variables.


Asunto(s)
Composición Familiar , Prosopis , Población Rural , Etiopía , Prosopis/crecimiento & desarrollo , Humanos , Masculino , Femenino , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Adulto
3.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717262

RESUMEN

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Asunto(s)
Distribución Animal , Cambio Climático , Especies Introducidas , Animales , Hemípteros/fisiología , Control de Insectos/métodos
4.
PLoS One ; 19(5): e0302935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717978

RESUMEN

Introduction and establishment of non-indigenous species (NIS) has been accelerated on a global scale by climate change. NIS Magallana gigas' (formerly Crassostrea gigas') global spread over the past several decades has been linked to warming waters, specifically during summer months, raising the specter of more spread due to predicted warming. We tracked changes in density and size distribution of M. gigas in two southern California, USA bays over the decade spanning 2010-2020 using randomly placed quadrats across multiple intertidal habitats (e.g., cobble, seawalls, riprap) and documented density increases by 2.2 to 32.8 times at 7 of the 8 sites surveyed across the two bays. These increases in density were coincident with 2-4° C increases in median monthly seawater temperature during summer months, consistent with global spread of M. gigas elsewhere. Size frequency distribution data, with all size classes represented across sites, suggest now-regular recruitment of M. gigas. Our data provide a baseline against which to compare future changes in density and abundance of a globally-spread NIS of significant concern.


Asunto(s)
Cambio Climático , Estuarios , Especies Introducidas , California , Animales , Ecosistema , Estaciones del Año , Crassostrea , Temperatura
5.
PLoS One ; 19(5): e0301456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718023

RESUMEN

The round goby (Neogobius melanostomus) is an invasive benthic fish first introduced to the Laurentian Great Lakes in 1990 that has negatively impacted native fishes through increased competition for food and habitat, aggressive interactions, and egg predation. While complete eradication of the round goby is currently not possible, intensive trapping in designated areas during spawning seasons could potentially protect critical native fish spawning habitats. Baited minnow traps were spaced 10 meters apart in shallow water along a 100-meter stretch of shoreline within the Duluth-Superior Harbor during the round goby breeding period (June to October) with captured round gobies removed from interior traps (N = 10) every 48 hours. These traps were bracketed by two pairs of reference traps deployed weekly for 48 hours, from which round gobies were also tagged and released. The number of round gobies captured in the interior traps declined by 67% compared to reference traps over the course of the study, with extended periods of no captures. The tagged round gobies showed high site affinity, with 82.8% of tagged fish recaptured at the previous release site. The results indicate that even at open water sites, which allow natural migration of round gobies into the area, extensive trapping could reduce local population numbers.


Asunto(s)
Especies Introducidas , Animales , Ecosistema , Densidad de Población , Perciformes/fisiología , Peces/fisiología , Lagos
6.
Sci Rep ; 14(1): 10159, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698043

RESUMEN

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Asunto(s)
Alelopatía , Bidens , Erigeron , Especies Introducidas , Suelo , Suelo/química , Erigeron/química , Egipto , Hidroxibenzoatos
7.
Biol Lett ; 20(5): 20230600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715462

RESUMEN

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas/virología , Varroidae/virología , Varroidae/fisiología , Virus ARN/fisiología , Virus ARN/genética , Francia/epidemiología , Especies Introducidas , Dicistroviridae/genética , Dicistroviridae/fisiología , Prevalencia
8.
Sci Rep ; 14(1): 9973, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693164

RESUMEN

Identifying the environmental factors that determine the occurrence of invasive species is essential in defining and implementing effective control campaigns. Here, we applied multi-season occupancy models to analyze American mink (Neogale vison) track data collected using 121 floating rafts, as a function of factors occurring at multiple spatial scales. Our overall aim was to identify those factors that determine the use, colonization or abandonment of rafts by free ranging individuals found in western Macedonia, Greece. We found that increasing values of shrubs and rock cover at the micro-habitat scale were positively associated with the species' probability of raft use, as was the density of medium-sized rivers at the landscape scale. Colonization was found to increase with increasing amounts of shrub and reed cover; however, both variables were not informative. Conversely, the distance from the nearest fur farm was highly informative in predicting raft abandonment by the species. Effective control actions may require removal by trapping along rocky or densely vegetated riverbanks or lake shores located in the vicinity of the established fur farms in the area. Habitat management, although possible, may be difficult to implement due to the ability of the species to adapt. Finally, fur farms should maximize security and establish an early warning and rapid eradication system in case of future escapes.


Asunto(s)
Ecosistema , Especies Introducidas , Visón , Animales , Grecia , Visón/fisiología , Dinámica Poblacional , Estaciones del Año
9.
Sci Rep ; 14(1): 10803, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734771

RESUMEN

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Asunto(s)
Especies Introducidas , Avispas , Animales , América del Norte , Avispas/genética , Genética de Población , Genómica/métodos , Variación Genética , Endogamia , Genoma de los Insectos
10.
Glob Chang Biol ; 30(5): e17312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736133

RESUMEN

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.


Asunto(s)
Especies Introducidas , Invertebrados , Dinámica Poblacional , Animales , Invertebrados/fisiología , Europa (Continente) , Ecosistema , Agua Dulce
11.
Ecol Evol Physiol ; 97(2): 71-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728690

RESUMEN

AbstractLocomotion is essential for survival, but it requires resources such as energy and metabolites and therefore may conflict with other physiological processes that also demand resources, particularly expensive processes such as immunological responses. This possible trade-off may impose limits on either the magnitude of immune responses or the patterns of activity and performance. Previous studies have shown that invasive species may have a depressed immune response, allowing them to maintain locomotor function and reproduction even when sick. This may contribute to the ecological success of invasive species in colonization and dispersal. In contrast, noninvasive species tend to reduce activity as a response to infection. Here, we studied the impact of a simulated infection on locomotor performance and voluntary movement in the anurans Xenopus laevis (a globally invasive species) and Xenopus allofraseri (a noninvasive congeneric). We found that a simulated infection reduces locomotor performance in both species, with an accentuated effect on X. allofraseri. Voluntary movement was marginally different between species. Our data suggest that a simulated infection leads to behavioral depression and reduced locomotor performance in anurans and show that this effect is limited in the invasive X. laevis. Contrasting responses to an immune challenge have been reported in the few amphibian taxa analyzed to date and suggest relationships between ecology and immunology that deserve further investigation. Specifically, a depressed immune response may underlie a propension to invasion in some species. Whether this is a general trend for invasive species remains to be tested, but our data add to the growing body of work documenting depressed immune systems in invasive species.


Asunto(s)
Especies Introducidas , Locomoción , Xenopus laevis , Animales , Locomoción/fisiología , Femenino , Masculino , Especificidad de la Especie , Anuros/inmunología
12.
Sci Total Environ ; 927: 172271, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583606

RESUMEN

The decomposition rates and stoichiometric characteristics of many aquatic plants remain unclear, and our understanding of material flow and nutrient cycles within freshwater ecosystems is limited. In this study, an in-situ experiment involving 23 aquatic plants (16 native and 7 exotic species) was carried out via the litter bag method for 63 days, during which time the mass loss and nutrient content (carbon (C), nitrogen (N), and phosphorus (P)) of plants were measured. Floating-leaved plants exhibited the highest decomposition rate (0.038 ± 0.002 day-1), followed by submerged plants and free-floating plants (0.029 ± 0.002 day-1), and emergent plants had the lowest decomposition rate (0.019 ± 0.001 day-1). Mass loss by aquatic plants correlated with stoichiometric characteristics; the decomposition rate increased with an increasing P content and with a decreasing C content, C:N ratio, and C:P ratio. Notably, the decomposition rate of submerged exotic plants (0.044 ± 0.002 day-1) significantly exceeded that of native plants (0.026 ± 0.004 day-1), while the decomposition rate of emergent exotic plants was 55 ± 4 % higher than that of native plants. The decomposition rates of floating-leaved and free-floating plants did not significantly differ between the native and exotic species. During decomposition, emergent plants displayed an increase in C content and a decrease in N content, contrary to patterns observed in other life forms. The P content decreased for submerged (128 ± 7 %), emergent (90 ± 5 %), floating-leaved (104 ± 6 %), and free-floating plants (32 ± 6 %). Exotic plants released more C and P but accumulated more N than did native plants. In conclusion, the decomposition of aquatic plants is closely linked to litter quality and influences nutrient cycling in freshwater ecosystems. Given these findings, the invasion of the littoral zone by submerged and emergent exotic plants deserves further attention.


Asunto(s)
Especies Introducidas , Lagos , Nitrógeno , Fósforo , Plantas , Lagos/química , Fósforo/análisis , Nitrógeno/análisis , Carbono/análisis , Ecosistema , Hojas de la Planta/química , China
13.
Sci Data ; 11(1): 368, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605058

RESUMEN

Globally, there is a concerning decline in many insect populations, and this trend likely extends to all arthropods, potentially impacting unique island biota. Native non-endemic and endemic species on islands are under threat due to habitat destruction, with the introduction of exotic, and potentially invasive, species, further contributing to this decline. While long-term studies of plants and vertebrate fauna are available, long-term arthropod datasets are limited, hindering comparisons with better-studied taxa. The Biodiversity of Arthropods of the Laurisilva of the Azores (BALA) project has allowed gathering comprehensive data since 1997 in the Azorean Islands (Portugal), using standardised sampling methods across islands. The dataset includes arthropod counts from epigean (pitfall traps) and canopy-dwelling (beating samples) communities, enriched with species information, biogeographic origins, and IUCN categories. Metadata associated with the sample protocol and events, like sample identifier, archive number, sampled tree species, and trap type are also recorded. The database is available in multiple formats, including Darwin Core, which facilitates the ecological analysis of pressing environmental concerns, such as arthropod population declines and biological invasions.


Asunto(s)
Artrópodos , Bosques , Animales , Biodiversidad , Ecosistema , Especies Introducidas , Azores
14.
Environ Monit Assess ; 196(5): 478, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664274

RESUMEN

The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.


Asunto(s)
Carbón Orgánico , Herbicidas , Ácidos Nicotínicos , Malezas , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Herbicidas/análisis , Herbicidas/química , Suelo/química , Adsorción , Ácidos Nicotínicos/química , Lantana/química , Especies Introducidas , Cinética , Asteraceae/química
15.
Sci Rep ; 14(1): 8958, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637667

RESUMEN

Dominant vegetation in many ecosystems is an integral component of structure and habitat. In many drylands, native shrubs function as foundation species that benefit other plants and animals. However, invasive exotic plant species can comprise a significant proportion of the vegetation. In Central California drylands, the facilitative shrub Ephedra californica and the invasive Bromus rubens are widely dispersed and common. Using comprehensive survey data structured by shrub and open gaps for the region, we compared network structure with and without this native shrub canopy and with and without the invasive brome. The presence of the invasive brome profoundly shifted the network measure of centrality in the microsites structured by a shrub canopy (centrality scores increased from 4.3 under shrubs without brome to 6.3, i.e. a relative increase of 42%). This strongly suggests that plant species such as brome can undermine the positive and stabilizing effects of native foundation plant species provided by shrubs in drylands by changing the frequency that the remaining species connect to one another. The net proportion of positive and negative associations was consistent across all microsites (approximately 50% with a total of 14% non-random co-occurrences on average) suggesting that these plant-plant networks are rewired but not more negative. Maintaining resilience in biodiversity thus needs to capitalize on protecting native shrubs whilst also controlling invasive grass species particularly when associated with shrubs.


Asunto(s)
Bromus , Ecosistema , Plantas , Biodiversidad , Especies Introducidas , California
16.
Funct Plant Biol ; 512024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669461

RESUMEN

Chlorophyll a fluorescence parameters related to PSII photochemistry, photoprotection and photoinhibition were investigated in four C3 plant species growing in their natural habitat: Prosopis juliflora ; Abutilon indicum ; Salvadora persica ; and Phragmites karka . This study compared the light reaction responses of P. juliflora , an invasive species, with three native co-existing species, which adapt to varying water deficit and high salt stress. Chlorophyll a fluorescence quenching analyses revealed that P. juliflora had the highest photochemical quantum efficiency and yield, regulated by higher fraction of open reaction centres and reduced photoprotective energy dissipation without compromising the integrity of photosynthetic apparatus due to photoinhibition. Moreover, the elevated values of parameters obtained through polyphasic chlorophyll a fluorescence induction kinetics, which characterise the photochemistry of PSII and electron transport, highlighted the superior performance index of energy conservation in the transition from excitation to the reduction of intersystem electron carriers for P. juliflora compared to other species. Enhanced pigment contents and their stoichiometry in P. juliflora apparently contributed to upregulating fluxes and yields of energy absorbance, trapping and transport. This enhanced photochemistry, along with reduced non-photochemical processes, could explain the proclivity for invasion advantage in P. juliflora across diverse stress conditions.


Asunto(s)
Clorofila A , Clorofila , Complejo de Proteína del Fotosistema II , Prosopis , Prosopis/efectos de los fármacos , Prosopis/química , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Estrés Salino/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Introducidas , Fluorescencia
17.
PLoS One ; 19(4): e0302259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669254

RESUMEN

The box tree moth Cydalima perspectalis (Walker) (Lepidoptera: Crambidae) (BTM) is a native moth throughout eastern Asia, having recently become invasive in Europe (2007) where it feeds on boxwood (= box tree), Buxus spp. The moth rapidly spread across Europe and the Caucasus causing damage to both ornamental and wild Buxus. In 2018, C. perspectalis was found in Toronto, ON, Canada, and has since spread south into the US. To better predict where the moth will establish and have significant impact on ornamental trade in North America, we used most recent scientific literature and distribution points to update the temperature and diapause indices of an existing ecoclimatic CLIMEX model. The model parameters provided a good fit for the potential distribution of BTM compared to its known distribution across eastern Asia and in Europe. Interestingly, our results suggest that the current native distribution in Asia is incomplete and that further expansion is also possible in its introduced range, especially in northern Europe, along the Mediterranean coast of Africa, and eastward to central Russia. In North America, the model predicts that most of North America should be climatically suitable for the moth's establishment, with the exception of Alaska and the northern territories of Canada, as well as higher elevations in the Rocky Mountains and southern hot and dry areas. Our study highlights the importance of the CLIMEX model to assess the risk of BTM spreading in its newly invaded areas, especially North America, and its use to help make decisions in terms of regulatory dispersal restrictions and choice of management options.


Asunto(s)
Especies Introducidas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Europa (Continente) , América del Norte , Asia , Modelos Biológicos , Distribución Animal
18.
Sci Rep ; 14(1): 9556, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664465

RESUMEN

Bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), black carp (Mylopharyngodon piceus), and grass carp (Ctenopharyngodon idella), are invasive species in North America. However, they hold significant economic importance as food sources in China. The drifting stage of carp eggs has received great attention because egg survival rate is strongly affected by river hydrodynamics. In this study, we explored egg-drift dynamics using computational fluid dynamics (CFD) models to infer potential egg settling zones based on mechanistic criteria from simulated turbulence in the Lower Missouri River. Using an 8-km reach, we simulated flow characteristics with four different discharges, representing 45-3% daily flow exceedance. The CFD results elucidate the highly heterogeneous spatial distribution of flow velocity, flow depth, turbulence kinetic energy (TKE), and the dissipation rate of TKE. The river hydrodynamics were used to determine potential egg settling zones using criteria based on shear velocity, vertical turbulence intensity, and Rouse number. Importantly, we examined the difference between hydrodynamic-inferred settling zones and settling zones predicted using an egg-drift transport model. The results indicate that hydrodynamic inference is useful in determining the 'potential' of egg settling, however, egg drifting paths should be taken into account to improve prediction. Our simulation results also indicate that the river turbulence does not surpass the laboratory-identified threshold to pose a threat to carp eggs.


Asunto(s)
Carpas , Hidrodinámica , Ríos , Animales , Carpas/fisiología , Especies Introducidas , Óvulo/fisiología , Modelos Biológicos , Modelos Teóricos
19.
PeerJ ; 12: e17214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646489

RESUMEN

Many native insects have evolved defenses against native predators. However, their defenses may not protect them from non-native predators due to a limited shared history. The American bullfrog, Aquarana catesbeiana (Anura: Ranidae), which has been intentionally introduced to many countries, is believed to impact native aquatic animals through direct predation. Adults of whirligig beetles (Coleoptera: Gyrinidae), known for swimming and foraging on the water surface of ponds and streams, reportedly possess chemical defenses against aquatic predators, such as fish. Although whirligig beetles potentially encounter both bullfrogs and other frogs in ponds and lakes, the effectiveness of their defenses against frogs has been rarely studied. To assess whether whirligig beetles can defend against native and non-native frogs, we observed the behavioral responses of the native pond frog, Pelophylax nigromaculatus (Anura: Ranidae), and the invasive non-native bullfrog, A. catesbeiana, to native whirligig beetles, Gyrinus japonicus and Dineutus orientalis, in Japan. Adults of whirligig beetles were provided to frogs under laboratory conditions. Forty percent of G. japonicus and D.orientalis were rejected by P. nigromaculatus, while all whirligig beetles were easily consumed by A. catesbeiana. Chemical and other secondary defenses of G. japonicus and D. orientalis were effective for some individuals of P. nigromaculatus but not for any individuals of A. catesbeiana. These results suggest that native whirligig beetles suffer predation by invasive non-native bullfrogs in local ponds and lakes in Japan.


Asunto(s)
Escarabajos , Especies Introducidas , Conducta Predatoria , Animales , Escarabajos/fisiología , Conducta Predatoria/fisiología , Japón , Ranidae , Rana catesbeiana
20.
Ying Yong Sheng Tai Xue Bao ; 35(3): 669-677, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646754

RESUMEN

As one of the important blue carbon pools in tropical and subtropical intertidal zones, mangroves are widely distributed along the coast of Guangxi in China. To deeply explore the variations of potential suitable habitats for mangroves in China under the background of climate change, based on remote sensing interpretation data of coastal wetlands in Guangxi, global marine environment and bioclimatic environment data in 2021, we constructed a maximum entropy habitat distribution model to simulate the spatial distribution of potential suitable areas for mangroves and the invasive species, Spartina alterniflora, along the coast of Guangxi, and predicted the patterns under extreme climate change scenarios (SSP5-8.5). The results showed that the interpreted area of mangrove forests along the coastline of Guangxi was 9136.7 hm2 in 2021, while the predicted area of potential suitable habitat area was 55955.9 hm2. Current distribution area of mangroves had basically covered its potential high suitability area and nearly 10% of the moderate suitability area. The current area of S. alterniflora was 1320.4 hm2, and the predicted area of potential high suitability area was twice of current area, indicating that there was still a large proportion of high suitability area that was not occupied by S. alterniflora. The most important environmental factors driving the distribution of potential habitats in mangroves were offshore Euclidean distance (62.2%), terrain deviation index (8.7%), average sea surface temperature in the hottest season (6.1%), and seabed terrain elevation (5.6%). The contribution of geographical conditions on mangrove distribution was predominant. Under the climate change scenario (SSP5-8.5), potential suitable area for mangroves would increase by 5.3%, while that for S. alterniflora would decrease by 3.1%. The overlapping proportion of the potential suitable area for mangroves and S. alterniflora was similar under current and SSP5-8.5 scenarios, being 15.2% and 14.5%, respectively. In the future, it is necessary to strengthen the protection and ecological restoration of mangroves along the coast of Guangxi and there is great challenge for preventing further invasion of S. alterniflora.


Asunto(s)
Cambio Climático , Ecosistema , Especies Introducidas , Poaceae , Rhizophoraceae , Humedales , China , Rhizophoraceae/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Océanos y Mares , Predicción , Modelos Teóricos , Conservación de los Recursos Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA