Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001136

RESUMEN

Bioimpedance is a diagnostic sensing method used in medical applications, ranging from body composition assessment to detecting skin cancer. Commonly, discrete-component (and at times integrated) circuit variants of the Howland Current Source (HCS) topology are employed for injection of an AC current. Ideally, its amplitude should remain within 1% of its nominal value across a frequency range, and that nominal value should be programmable. However, the method's applicability and accuracy are hindered due to the current amplitude diminishing at frequencies above 100 kHz, with very few designs accomplishing 1 MHz, and only at a single nominal amplitude. This paper presents the design and implementation of an adaptive current source for bioimpedance applications employing automatic gain control (AGC). The "Adaptive Howland Current Source" (AHCS) was experimentally tested, and the results indicate that the design can achieve less than 1% amplitude error for both 1 mA and 100 µA currents for bandwidths up to 3 MHz. Simulations also indicate that the system can be designed to achieve up to 19% noise reduction relative to the most common HCS design. AHCS addresses the need for high bandwidth AC current sources in bioimpedance spectroscopy, offering automatic output current compensation without constant recalibration. The novel structure of AHCS proves crucial in applications requiring higher ß-dispersion frequencies exceeding 1 MHz, where greater penetration depths and better cell status assessment can be achieved, e.g., in the detection of skin or breast cancer.


Asunto(s)
Impedancia Eléctrica , Humanos , Espectroscopía Dieléctrica/métodos , Composición Corporal/fisiología
2.
Sci Rep ; 14(1): 16380, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013939

RESUMEN

Bioimpedance spectrum (BIS) measurements have a great future in in vitro experiments, meeting all the requirements for non-destructive and label-free methods. Nevertheless, a real basic research can provide the necessary milestones to achieve the success of the method. In this paper a self-developed technology-based approach for in vitro assays is proposed. Authors invented a special graphene-based measuring plate in order to assess the high sensitivity and reproducibility of introduced technique. The design of the self-produced BIS plates maximizes the detection capacity of qualitative changes in cell culture and it is robust against physical effects and artifacts. The plates do not influence the viability and proliferation, however the results are robust, stable and reproducible regardless of when and where the experiments are carried out. In this study, physiological saline concentrations, two cancer and stem cell lines were utilized. All the results were statistically tested and confirmed. The findings of the assays show, that the introduced BIS technology is appropriate to be used in vitro experiments with high efficacy. The experimental results demonstrate high correlation values across the replicates, and the model parameters suggested that the characteristic differences among the various cell lines can be detected using appropriate hypothesis tests.


Asunto(s)
Impedancia Eléctrica , Humanos , Reproducibilidad de los Resultados , Grafito/química , Línea Celular Tumoral , Supervivencia Celular , Espectroscopía Dieléctrica/métodos , Proliferación Celular
3.
Sci Rep ; 14(1): 13155, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849386

RESUMEN

Hepatocellular carcinoma (HCC) stands as the most prevalent form of primary liver cancer, predominantly affecting patients with chronic liver diseases such as hepatitis B or C-induced cirrhosis. Diagnosis typically involves blood tests (assessing liver functions and HCC biomarkers), imaging procedures such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), and liver biopsies requiring the removal of liver tissue for laboratory analysis. However, these diagnostic methods either entail lengthy lab processes, require expensive imaging equipment, or involve invasive techniques like liver biopsies. Hence, there exists a crucial need for rapid, cost-effective, and noninvasive techniques to characterize HCC, whether in serum or tissue samples. In this study, we developed a spiral sensor implemented on a printed circuit board (PCB) technology that utilizes impedance spectroscopy and applied it to 24 tissues and sera samples as proof of concept. This newly devised circuit has successfully characterized HCC and normal tissue and serum samples. Utilizing the distinct dielectric properties between HCC cells and serum samples versus the normal samples across a specific frequency range, the differentiation between normal and HCC samples is achieved. Moreover, the sensor effectively characterizes two HCC grades and distinguishes cirrhotic/non-cirrhotic samples from tissue specimens. In addition, the sensor distinguishes cirrhotic/non-cirrhotic samples from serum specimens. This pioneering study introduces Electrical Impedance Spectroscopy (EIS) spiral sensor for diagnosing HCC and liver cirrhosis in clinical serum-an innovative, low-cost, rapid (< 2 min), and precise PCB-based technology without elaborate sample preparation, offering a novel non-labeled screening approach for disease staging and liver conditions.


Asunto(s)
Carcinoma Hepatocelular , Espectroscopía Dieléctrica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Humanos , Espectroscopía Dieléctrica/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Hígado/patología , Biomarcadores de Tumor/sangre
4.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38931556

RESUMEN

This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 µg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Espectroscopía Dieléctrica , Oro , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virología , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Oro/química , Electrodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/análisis , Carbono/química , Fosfoproteínas/análisis
5.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894428

RESUMEN

Heart failure is a severe medical condition with an important worldwide incidence that occurs when the heart is unable to efficiently pump the patient's blood throughout the body. The monitoring of edema in the lower limbs is one of the most efficient ways to control the evolution of the condition. Impedance spectroscopy has been proposed as an efficient technique to monitor body volume in patients with heart failure. It is necessary to research new wearable devices for remote patient monitoring, which can be easily worn by patients in a continuous way. In this work, we design and implement new wearable textile electrodes for the monitoring of edema evolution in patients with heart failure. Impedance spectroscopy measurements were carried out in 5 healthy controls and 2 patients with heart failure using our wearable electrodes for 3 days. The results show the appropriateness of impedance spectroscopy and our wearable electrodes to monitor body volume evolution. Impedance spectroscopy is shown to be an efficient marker of the presence of edema in heart failure patients. Initial patient positive feedback was obtained for the use of the wearable device.


Asunto(s)
Espectroscopía Dieléctrica , Electrodos , Insuficiencia Cardíaca , Textiles , Dispositivos Electrónicos Vestibles , Humanos , Insuficiencia Cardíaca/fisiopatología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Espectroscopía Dieléctrica/métodos , Espectroscopía Dieléctrica/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Edema/diagnóstico , Anciano
6.
Food Res Int ; 187: 114353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763640

RESUMEN

The food industry has grown with the demands for new products and their authentication, which has not been accompanied by the area of analysis and quality control, thus requiring novel process analytical technologies for food processes. An electronic tongue (e-tongue) is a multisensor system that can characterize complex liquids in a fast and simple way. Here, we tested the efficacy of an impedimetric microfluidic e-tongue setup - comprised by four interdigitated electrodes (IDE) on a printed circuit board (PCB), with four pairs of digits each, being one bare sensor and three coated with different ultrathin nanostructured films with different electrical properties - in the analysis of fresh and industrialized coconut water. Principal Component Analysis (PCA) was applied to observe sample differences, and Partial Least Squares Regression (PLSR) was used to predict sample physicochemical parameters. Linear Discriminant Analysis (LDA) and Partial Least Square - Discriminant Analysis (PLS-DA) were compared to classify samples based on data from the e-tongue device. Results indicate the potential application of the microfluidic e-tongue in the identification of coconut water composition and determination of physicochemical attributes, allowing for classification of samples according to soluble solid content (SSC) and total titratable acidity (TTA) with over 90% accuracy. It was also demonstrated that the microfluidic setup has potential application in the food industry for quality assessment of complex liquid samples.


Asunto(s)
Cocos , Espectroscopía Dieléctrica , Análisis de Componente Principal , Cocos/química , Análisis de los Mínimos Cuadrados , Espectroscopía Dieléctrica/métodos , Análisis Discriminante , Agua/química , Análisis de los Alimentos/métodos , Microfluídica/métodos , Microfluídica/instrumentación , Nariz Electrónica
7.
FASEB J ; 38(10): e23700, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787606

RESUMEN

Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.


Asunto(s)
Aterosclerosis , Espectroscopía Dieléctrica , Animales , Conejos , Espectroscopía Dieléctrica/métodos , Masculino , Aterosclerosis/patología , Aterosclerosis/diagnóstico por imagen , Aorta Abdominal/patología , Aorta Abdominal/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones/métodos , Fenotipo , Modelos Animales de Enfermedad , Macrófagos/patología , Macrófagos/metabolismo
8.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794040

RESUMEN

Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.


Asunto(s)
Espectroscopía Dieléctrica , Eritrocitos , Plasmodium falciparum , Eritrocitos/parasitología , Espectroscopía Dieléctrica/métodos , Espectroscopía Dieléctrica/instrumentación , Humanos , Plasmodium falciparum/fisiología , Plasmodium falciparum/patogenicidad , Electrodos , Dispositivos Laboratorio en un Chip , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Impedancia Eléctrica , Malaria/diagnóstico , Malaria/parasitología
9.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732847

RESUMEN

The most reliable methods for pregnancy diagnosis in dairy herds include rectal palpation, ultrasound examination, and evaluation of plasma progesterone concentrations. However, these methods are expensive, labor-intensive, and invasive. Thus, there is a need to develop a practical, non-invasive, cost-effective method that can be implemented on the farm to detect pregnancy. This study suggests employing microwave dielectric spectroscopy (MDS, 0.5-40 GHz) as a method to evaluate reproduction events in dairy cows. The approach involves the integration of MDS data with information on milk solids to detect pregnancy and identify early embryonic loss in dairy cows. To test the ability to predict pregnancy according to these measurements, milk samples were collected from (i) pregnant and non-pregnant randomly selected cows, (ii) weekly from selected cows (n = 12) before insemination until a positive pregnancy test, and (iii) daily from selected cows (n = 10) prior to insemination until a positive pregnancy test. The results indicated that the dielectric strength of Δε and the relaxation time, τ, exhibited reduced variability in the case of a positive pregnancy diagnosis. Using principal component analysis (PCA), a clear distinction between pregnancy and nonpregnancy status was observed, with improved differentiation upon a higher sampling frequency. Additionally, a neural network machine learning technique was employed to develop a prediction algorithm with an accuracy of 73%. These findings demonstrate that MDS can be used to detect changes in milk upon pregnancy. The developed machine learning provides a broad classification that could be further enhanced with additional data.


Asunto(s)
Microondas , Leche , Animales , Femenino , Bovinos , Leche/química , Embarazo , Análisis de Componente Principal , Espectroscopía Dieléctrica/métodos , Industria Lechera/métodos , Pruebas de Embarazo/métodos , Pruebas de Embarazo/veterinaria , Algoritmos
10.
ACS Sens ; 9(6): 2897-2906, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776471

RESUMEN

Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/diagnóstico , Humanos , Detección Precoz del Cáncer/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Estructuras Metalorgánicas/química , Exosomas/química , Límite de Detección , Espectroscopía Dieléctrica/métodos , Biomarcadores de Tumor/análisis
11.
Int J Biol Macromol ; 271(Pt 1): 132460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772468

RESUMEN

Mastitis diagnosis can be made by detecting Staphylococcus aureus (S. aureus), which requires high sensitivity and selectivity. Here, we report on microfluidic genosensors and electronic tongues to detect S. aureus DNA using impedance spectroscopy with data analysis employing visual analytics and machine learning techniques. The genosensors were made with layer-by-layer films containing either 10 bilayers of chitosan/chondroitin sulfate or 8 bilayers of chitosan/sericin functionalized with an active layer of cpDNA S. aureus. The specific interactions leading to hybridization in these genosensors allowed for a low limit of detection of 5.90 × 10-19 mol/L. The electronic tongue had four sensing units made with 6-bilayer chitosan/chondroitin sulfate films, 10-bilayer chitosan/chondroitin sulfate, 8-bilayer chitosan/sericin, and 8-bilayer chitosan/gold nanoparticles modified with sericin. Despite the absence of specific interactions, various concentrations of DNA S. aureus could be distinguished when the impedance data were plotted using a dimensionality reduction technique. Selectivity of S. aureus DNA was confirmed using multidimensional calibration spaces, based on machine learning, with accuracy up to 89 % for the genosensors and 66 % for the electronic tongue. Hence, with these computational methods one may opt for the more expensive genosensors or the simpler and cheaper electronic tongue, depending on the sensitivity level required to diagnose mastitis.


Asunto(s)
Técnicas Biosensibles , Quitosano , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/genética , Quitosano/química , Técnicas Biosensibles/métodos , Calibración , Nariz Electrónica , ADN Bacteriano/genética , ADN Bacteriano/análisis , Espectroscopía Dieléctrica/métodos , Femenino , Oro/química
12.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676260

RESUMEN

The study presents a promising approach to enzymatic kinetics using Electrochemical Impedance Spectroscopy (EIS) to assess fundamental parameters of modified enteropeptidases. Traditional methods for determining these parameters, while effective, often lack versatility and convenience, especially under varying environmental conditions. The use of EIS provides a novel approach that overcomes these limitations. The enteropeptidase underwent genetic modification through the introduction of single amino acid modifications to assess their effect on enzyme kinetics. However, according to the one-sample t-test results, the difference between the engineered enzymes and hEKL was not statistically significant by conventional criteria. The kinetic parameters were analyzed using fluorescence spectroscopy and EIS, which was found to be an effective tool for the real-time measurement of enzyme kinetics. The results obtained through EIS were not significantly different from those obtained through traditional fluorescence spectroscopy methods (p value >> 0.05). The study validates the use of EIS for measuring enzyme kinetics and provides insight into the effects of specific amino acid changes on enteropeptidase function. These findings have potential applications in biotechnology and biochemical research, suggesting a new method for rapidly assessing enzymatic activity.


Asunto(s)
Espectroscopía Dieléctrica , Cinética , Espectroscopía Dieléctrica/métodos , Espectrometría de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Ingeniería de Proteínas/métodos
13.
Physiol Meas ; 45(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38604189

RESUMEN

Objective. Bioimpedance spectroscopy (BIS) is a popular technique for the assessment of body composition in children and adults but has not found extensive use in babies and infants. This due primarily to technical difficulties of measurement in these groups. Although improvements in data modelling have, in part, mitigated this issue, the problem continues to yield unacceptably high rates of poor quality data. This study investigated an alternative data modelling procedure obviating issues associated with BIS measurements in babies and infants.Approach.BIS data are conventionally analysed according to the Cole model describing the impedance response of body tissues to an appliedACcurrent. This approach is susceptible to errors due to capacitive leakage errors of measurement at high frequency. The alternative is to model BIS data based on the resistance-frequency spectrum rather than the reactance-resistance Cole model thereby avoiding capacitive error impacts upon reactance measurements.Main results.The resistance-frequency approach allowed analysis of 100% of data files obtained from BIS measurements in 72 babies compared to 87% successful analyses with the Cole model. Resistance-frequency modelling error (percentage standard error of the estimate) was half that of the Cole method. Estimated resistances at zero and infinite frequency were used to predict body composition. Resistance-based prediction of fat-free mass (FFM) exhibited a 30% improvement in the two-standard deviation limits of agreement with reference FFM measured by air displacement plethysmography when compared to Cole model-based predictions.Significance.This study has demonstrated improvement in the analysis of BIS data based on the resistance frequency response rather than conventional Cole modelling. This approach is recommended for use where BIS data are compromised by high frequency capacitive leakage errors such as those obtained in babies and infants.


Asunto(s)
Composición Corporal , Espectroscopía Dieléctrica , Impedancia Eléctrica , Humanos , Lactante , Espectroscopía Dieléctrica/métodos , Recién Nacido , Masculino , Femenino
14.
Clin Obes ; 14(4): e12655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38487943

RESUMEN

Management of obesity requires a multidisciplinary approach including physical activity interventions, which have significant impacts on overall health outcomes. Greater levels of lean muscle mass are significantly associated with improved health and reduced risk of comorbidities and should be preserved where possible when undertaking rapid weight loss. This article reports on the physical and functional outcomes achieved during a 12-week intensive multidisciplinary intervention targeting obesity and evaluates correlations between body composition and functional outcomes. We additionally aimed to investigate the test-retest reliability and levels of agreement in body composition measurements using bioimpedance spectroscopy between seated and standing positions. Of the 35 participants included in analysis, significant differences were observed between baseline and post-intervention measures. These included weight loss of 12.6 kg, waist circumference reduction of 10.5 cm, fat mass reduction by 2.9%, muscle mass increase by 1.6%, 54.5 m improvement in the 6-minute walk test and 3.8 rep improvement in the 30-second sit-to-stand test. No significant correlations were observed between physical and functional outcome measures. Excellent test re-test reliability was observed in bioimpedance spectroscopy seated measurements (ICC >.9). Significant differences were observed between seated and standing bioimpedance spectroscopy measurements, however they are regarded as small differences in a clinical setting.


Asunto(s)
Composición Corporal , Impedancia Eléctrica , Obesidad , Humanos , Femenino , Masculino , Obesidad/terapia , Obesidad/fisiopatología , Persona de Mediana Edad , Adulto , Reproducibilidad de los Resultados , Sedestación , Pérdida de Peso , Circunferencia de la Cintura , Resultado del Tratamiento , Espectroscopía Dieléctrica/métodos , Rendimiento Físico Funcional
15.
Eur J Pediatr ; 183(5): 2251-2256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407589

RESUMEN

The purpose of this study is to evaluate the intracellular and extracellular volume before and after anesthesia in order to ascertain their variations and determine the potential utility of this information in optimizing intraoperative fluid administration practices. A bioimpedance spectroscopy device (body composition monitor, BCM) was used to measure total body fluid volume, extracellular volume, and intracellular volume. BCM measurements were performed before and after general anesthesia in unselected healthy children and adolescents visiting the Pediatric Institute of Southern Switzerland for low-risk surgical procedures hydrated with an isotonic solution. In 100 children and adolescents aged 7.0 (4.8-11) years (median and interquartile range), the average total body water increased perioperatively with a delta value of 182 (0-383) mL/m2 from pre- to postoperatively, as well as the extracellular water content, which had a similar increase with a delta value of 169 (19-307) mL/m2. The changes in total body water and extracellular water content significantly correlated with the amount of fluids administered. The intracellular water content did not significantly change.   Conclusion: Intraoperative administration of isotonic solutions results in a significant fluid accumulation in low-risk schoolchildren during general anesthesia. The results suggest that children without major health problems undergoing short procedures do not need any perioperative intravenous fluid therapy, because they are allowed to take clear fluids up to 1 h prior anesthesia. In future studies, the use of BCM measurements has the potential to be valuable in guiding intraoperative fluid therapy. What is Known: • Most children who undergo common surgical interventions or investigations requiring anesthesia are nowadays hydrated at a rate of 1700 mL/m2/day with an isotonic solution. • The use bioimpedance spectroscopy for the assessment of fluid status in healthy children has already been successfully validated. • The bioimpedance spectroscopy is already currently widely used in various nephrological settings to calculate fluid overload and determine patient's optimal fluid status. What is New: • Routine intraoperative fluid administration results in a significant fluid accumulation during general anesthesia in low-risk surgical procedures. • This observation might be relevant for children and adolescents with conditions predisposing to fluid retention. • In future studies, the use of BCM measurements has the potential to be valuable in guiding intraoperative fluid therapy.


Asunto(s)
Anestesia General , Composición Corporal , Fluidoterapia , Humanos , Niño , Proyectos Piloto , Masculino , Femenino , Anestesia General/métodos , Adolescente , Preescolar , Fluidoterapia/métodos , Espectroscopía Dieléctrica/métodos , Agua Corporal , Soluciones Isotónicas/administración & dosificación , Impedancia Eléctrica , Suiza
16.
Biosensors (Basel) ; 14(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38392020

RESUMEN

Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Espectroscopía Dieléctrica/métodos , Oxidación-Reducción , Oro/química , Electrodos , Proteínas de Unión al Retinol , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/química
17.
Mikrochim Acta ; 191(1): 72, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170245

RESUMEN

Non-structural 1 (NS1) is a protein biomarker that can be found in blood in the early stages of dengue and related infections (Zika and Chikungunya). This study aims to develop a biosensor to selectively quantify NS1 using DNA aptamer co-immobilized on gold electrodes with 6-(ferrocenyl)hexanethiol (FCH) using electrochemical capacitive spectroscopy. This technique uses a redox probe (FCH) immobilized on the self-assembled monolayer to convert impedance into capacitance information. The developed platform was blocked with bovine serum albumin before NS1 exposure and the ratio between aptamers and FCH was optimized. The aptasensor was tested using commercial NS1 serotype 4 in phosphate-buffered saline and commercial undiluted human serum. Using the optimum applied potential provides high sensitivity (3 and 4 nF per decade) and low limit of detection (30.9 and 41.8 fg/mL) with a large linear range (10 pg to 1 µg/mL and 10 pg to 100 ng/mL, respectively). Both results exhibit a residual standard deviation value < 1%. The results suggested that this aptasensor was capable of detecting NS1 in the clinical range and can be applied to any other specific aptamer with FCH, opening the path for label-free miniaturized point-of-care devices with high sensitivity and specificity.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Límite de Detección , Aptámeros de Nucleótidos/química , Espectroscopía Dieléctrica/métodos , Técnicas Biosensibles/métodos , Dengue/diagnóstico
18.
Lymphat Res Biol ; 22(1): 43-54, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851985

RESUMEN

Background: Bioimpedance spectroscopy (BIS) measurements are conventionally performed in supine position with a lead device attached to gel-backed electrodes, and more recently, with a stand-on device that uses fixed stainless-steel electrodes under the hands and feet. The aim of this study was to assess and compare BIS measurements made in supine, sitting, and standing positions using lead and stand-on impedance devices in participants with and without unilateral leg lymphedema. Materials and Methods: Participants with self-ascribed unilateral leg lymphedema (n = 24) and healthy controls (n = 71) were recruited using a cross-sectional study design. Triplicate BIS measurements were taken for each device in each position. Results: Impedance measurements with either device were reliable with coefficient of variation of 0.6% or lower. The magnitude of mean differences in absolute impedance values between devices were between 1% and 6% dependent on condition. L-Dex scores between the two devices were highly correlated (r = 0.82) and ∼70% of participants in the lymphedema group were classified as having lymphedema using the recommended cut-off with either device. There was no significant interleg difference of controls using the lead device; however, small, but significant differences (p = 0.0001) were found when using the stand-on device. Conclusion: The findings demonstrate that reliable impedance measurements of the legs can be made with either device in lying, sitting, or standing positions. However, data between the devices were not directly interchangeable. Although the risk of misidentification was small, reference ranges appropriate to the device and measurement position should be used when converting data to L-Dex scores.


Asunto(s)
Linfedema , Posicionamiento del Paciente , Humanos , Estudios Transversales , Pierna , Análisis Espectral , Linfedema/diagnóstico , Linfedema/etiología , Impedancia Eléctrica , Espectroscopía Dieléctrica/métodos
19.
Analyst ; 149(2): 269-289, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015145

RESUMEN

Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.


Asunto(s)
Técnicas Biosensibles , Impedancia Eléctrica , Técnicas Biosensibles/métodos , Electrodos , Espectroscopía Dieléctrica/métodos , Técnicas Electroquímicas
20.
Int J Pharm ; 649: 123630, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38040394

RESUMEN

Viable cell density (VCD) and cell viability (CV) are key performance indicators of cell culture processes in biopharmaceutical production of biologics and vaccines. Traditional methods for monitoring VCD and CV involve offline cell counting assays that are both labor intensive and prone to high variability, resulting in sparse sampling and uncertainty in the obtained data. Process analytical technology (PAT) approaches offer a means to address these challenges. Specifically, in situ probe-based measurements of dielectric spectroscopy (also commonly known as capacitance) can characterize VCD and CV continuously in real time throughout an entire process, enabling robust process characterization. In this work, we propose in situ dielectric spectroscopy as a PAT tool for real time analysis of live-virus vaccine (LVV) production. Dielectric spectroscopy was collected across 25 discreet frequencies, offering a thorough evaluation of the proposed technology. Correlation of this PAT methodology to traditional offline cell counting assays was performed, in which VCD and CV were both successfully predicted using dielectric spectroscopy. Both univariate and multivariate data analysis approaches were evaluated for their potential to establish correlation between the in situ dielectric spectroscopy and offline measurements. Univariate analysis strategies are presented for optimal single frequency selection. Multivariate analysis, in the form of partial least squares (PLS) regression, produced significantly higher correlations between dielectric spectroscopy and offline VCD and CV data, as compared to univariate analysis. Specifically, by leveraging multivariate analysis of dielectric information from all 25 spectroscopic frequencies measured, PLS models performed significantly better than univariate models. This is particularly evident during cell death, where tracking VCD and CV have historically presented the greatest challenge. The results of this work demonstrate the potential of both single and multiple frequency dielectric spectroscopy measurements for enabling robust LVV process characterization, suggesting that broader application of in situ dielectric spectroscopy as a PAT tool in LVV processes can provide significantly improved process understanding. To the best of our knowledge, this is the first report of in situ dielectric spectroscopy with multivariate analysis to successfully predict VCD and CV in real time during live virus-based vaccine production.


Asunto(s)
Espectroscopía Dieléctrica , Vacunas , Cricetinae , Animales , Supervivencia Celular , Células CHO , Recuento de Células , Espectroscopía Dieléctrica/métodos , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA