Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.446
Filtrar
1.
Sci Rep ; 14(1): 18534, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122766

RESUMEN

In this paper, we demonstrated the biological effects of acute low-dose neutrons on the whole body of rats and investigated the impact of that level of neutron dose to induce an in vivo radio-adaptive response. To understand the radio-adaptive response, the examined animals were exposed to acute neutron radiation doses of 5 and 10 mSv, followed by a 50 mSv challenge dose after 14 days. After irradiation, all groups receiving single and double doses were kept in cages for one day before sampling. The electron paramagnetic resonance (EPR) method was used to estimate the radiation-induced radicals in the blood, and some hematological parameters and lipid peroxidation (MDA) were determined. A comet assay was performed beside some of the antioxidant enzymes [catalase enzyme (CAT), superoxide dismutase (SOD), and glutathione (GSH)]. Seven groups of adult male rats were classified according to their dose of neutron exposure. Measurements of all studied markers are taken one week after harvesting, except for hematological markers, within 2 h. The results indicated lower production of antioxidant enzymes (CAT by 1.18-5.83%, SOD by 1.47-17.8%, and GSH by 11.3-82.1%). Additionally, there was an increase in red cell distribution width (RDW) (from 4.61 to 25.19%) and in comet assay parameters such as Tail Length, (from 6.16 to 10.81 µm), Tail Moment, (from 1.17 to 2.46 µm), and percentage of DNA in tail length (DNA%) (from 9.58 to 17.32%) in all groups exposed to acute doses of radiation ranging from 5 to 50 mSv, respectively. This emphasizes the ascending harmful effect with the increased acute thermal neutron doses. The values of the introduced factor of radio adaptive response for all markers under study reveal that the lower priming dose promotes a higher adaptation response and vice versa. Ultimately, the results indicate significant variations in DNA%, SOD enzyme levels, EPR intensity, total Hb concentration, and RDWs, suggesting their potential use as biomarkers for acute thermal neutron dosimetry. Further research is necessary to validate these measurements as biodosimetry for radiation exposure, including investigations involving the response impact of RAR with varied challenge doses and post-irradiation behavior.


Asunto(s)
Biomarcadores , Neutrones , Animales , Ratas , Masculino , Biomarcadores/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido/efectos de la radiación , Radiometría/métodos , Relación Dosis-Respuesta en la Radiación , Daño del ADN/efectos de la radiación , Adaptación Fisiológica/efectos de la radiación , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión/sangre , Ensayo Cometa , Estrés Oxidativo/efectos de la radiación , Espectroscopía de Resonancia por Spin del Electrón/métodos
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125759

RESUMEN

Photosystem I (PSI) serves as a model system for studying fundamental processes such as electron transfer (ET) and energy conversion, which are not only central to photosynthesis but also have broader implications for bioenergy production and biomimetic device design. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate key light-induced charge separation steps in PSI isolated from several green algal and cyanobacterial species. Following photoexcitation, rapid sequential ET occurs through either of two quasi-symmetric branches of donor/acceptor cofactors embedded within the protein core, termed the A and B branches. Using high-frequency (130 GHz) time-resolved EPR (TR-EPR) and deuteration techniques to enhance spectral resolution, we observed that at low temperatures prokaryotic PSI exhibits reversible ET in the A branch and irreversible ET in the B branch, while PSI from eukaryotic counterparts displays either reversible ET in both branches or exclusively in the B branch. Furthermore, we observed a notable correlation between low-temperature charge separation to the terminal [4Fe-4S] clusters of PSI, termed FA and FB, as reflected in the measured FA/FB ratio. These findings enhance our understanding of the mechanistic diversity of PSI's ET across different species and underscore the importance of experimental design in resolving these differences. Though further research is necessary to elucidate the underlying mechanisms and the evolutionary significance of these variations in PSI charge separation, this study sets the stage for future investigations into the complex interplay between protein structure, ET pathways, and the environmental adaptations of photosynthetic organisms.


Asunto(s)
Luz , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón , Cianobacterias/metabolismo , Fotosíntesis , Chlorophyta/metabolismo
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(6): 493-496, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38964890

RESUMEN

Hypoalbuminemia is one of the important clinical features of decompensated cirrhosis. As the disease progresses, not only does the total albumin concentration decrease, but so does the proportion of albumin that remains structurally and functionally intact. The structural and functional integrity of albumin is essential for its normal physiological role in the body. This led to the concept of "effective albumin concentration," which may be much lower than the total albumin concentration routinely measured clinically in patients with advanced cirrhosis. Liquid chromatography-tandem mass spectrometry, and electron paramagnetic resonance (EMR) are emerging technologies for effective albumin concentration detection, showing promising clinical application prospects, but research in patients with cirrhosis is still in the preliminary stage. Therefore, this article will comprehensively summarize the latest research on the aspects of effective albumin detection methods, liquid chromatography-tandem mass spectrometry, and electron paramagnetic resonance, as well as their applications.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Albúmina Sérica/análisis , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/sangre , Hipoalbuminemia/diagnóstico , Hipoalbuminemia/sangre
4.
Radiat Prot Dosimetry ; 200(11-12): 989-993, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016481

RESUMEN

Radiation dosimetry is an important task for assessing the biological damages created in human being due to ionising radiation exposure. Ionising radiation being invisible and beyond the perception of human natural sensors, the dosimetry equipments/systems are the utmost requirement for its measurement. Retrospective measurement of radiation doses is a challenging task as conventional radiation dosemeters are not available at the exposure site. The material/s in close proximity of exposed individual or individuals' biological samples may be used as retrospective radiation sensor for dosimetry purpose. Environment materials such as sand, bricks, ceramics, sand stones, quartz, feldspar, glasses and electronic chips have been utilised using TL (Thermoluminescence) techniques for retrospective gamma dose (min 10 cGy) measurement. Electron Spin Resonance techniques have been employed to human biological samples such as tooth enamel, bones, nails, hair, etc. and reported for dosimetry for ~20 cGy min dose measurement. Some commercial glasses have been found sensitive enough to measure the minimum gamma doses of the order of 100 cGy using TL techniques. For internal retrospective dosimetry, the radioactivity contamination assessment in food items, water, other edible product and ambient air are the prerequisites. The radioactivity concentration vis-à-vis their consumption rate may help in controlling the internal contamination and estimation of dose absorption in human body. Defence Laboratory, Jodhpur has been working extensively on the dosimetry techniques for external dose measurement using environmental material and developed portable contamination monitoring systems for food and water radioactivity measurement in the range of 50 Bq kg-1 to 1000 kBq kg-1 in 60 s measurement time. The recent research and development in the methodologies, equipments and systems undertaken towards capacity building and self-reliance in retrospective radiation dosimetry is reported in this paper.


Asunto(s)
Dosis de Radiación , Monitoreo de Radiación , Dosimetría Termoluminiscente , Humanos , Estudios Retrospectivos , Monitoreo de Radiación/métodos , Dosimetría Termoluminiscente/métodos , Dosimetría Termoluminiscente/instrumentación , Radiometría/métodos , Rayos gamma , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radiación Ionizante
5.
PeerJ ; 12: e17478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952976

RESUMEN

Bolt's Farm is the name given to a series of non-hominin bearing fossil sites that have often been suggested to be some of the oldest Pliocene sites in the Cradle of Humankind, South Africa. This article reports the results of the first combined Uranium-Series and Electron Spin Resonance (US-ESR) dating of bovid teeth at Milo's Cave and Aves Cave at Bolt's Farm. Both tooth enamel fragments and tooth enamel powder ages were presented for comparison. US-ESR, EU and LU models are calculated. Overall, the powder ages are consistent with previous uranium-lead and palaeomagnetic age estimates for the Aves Cave deposit, which suggest an age between ~3.15 and 2.61 Ma and provide the first ages for Milo's Cave dates to between ~3.1 and 2.7 Ma. The final ages were not overly dependent on the models used (US-ESR, LU or EU), which all overlap within error. These ages are all consistent with the biochronological age estimate (<3.4->2.6 Ma) based on the occurrence of Stage I Metridiochoerus andrewsi. Preliminary palaeomagnetic analysis from Milo's Cave indicates a reversal takes place at the site with predominantly intermediate directions, suggesting the deposit may date to the period between ~3.03 and 3.11 Ma within error of the ESR ages. This further suggests that there are no definitive examples of palaeocave deposits at Bolt's Farm older than 3.2 Ma. This research indicates that US-ESR dating has the potential to date fossil sites in the Cradle of Humankind to over 3 Ma. However, bulk sample analysis for US-ESR dating is recommended for sites over 3 Ma.


Asunto(s)
Fósiles , Datación Radiométrica , Uranio , Sudáfrica , Espectroscopía de Resonancia por Spin del Electrón/métodos , Uranio/análisis , Animales , Cuevas/química , Diente/química , Diente/anatomía & histología , Esmalte Dental/química
6.
Molecules ; 29(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38999173

RESUMEN

Ovalbumin (OVA), a protein vital for chick embryo nutrition, hydration, and antimicrobial protection, together with other egg-white proteins, migrates to the amniotic fluid and is orally absorbed by the embryo during embryogenesis. Recently, it has been shown that for optimal eggshell quality, the hen diet can be supplemented with manganese. Although essential for embryonic development, manganese in excess causes neurotoxicity. This study investigates whether OVA may be involved in the regulation of manganese levels. The binding of Mn(II) to OVA was investigated using electron paramagnetic resonance (EPR) spectroscopy. The results show that OVA binds a maximum of two Mn(II) ions, one with slightly weaker affinity, even in a 10-fold excess, suggesting it may have a protective role from Mn(II) overload. It seems that the binding of Mn(II), or the presence of excess Mn(II), does not affect OVA's tertiary structure, as evidenced from fluorescence and UV/vis measurements. Comparative analysis with bovine and human serum albumins revealed that they exhibit higher affinities for Mn(II) than OVA, most likely due to their essentially different physiological roles. These findings suggest that OVA does not play a role in the transport and storage of manganese; however, it may be involved in embryo protection from manganese-induced toxicity.


Asunto(s)
Desarrollo Embrionario , Homeostasis , Manganeso , Ovalbúmina , Manganeso/metabolismo , Animales , Embrión de Pollo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Unión Proteica , Bovinos , Pollos
7.
Nat Commun ; 15(1): 4041, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740794

RESUMEN

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Asunto(s)
Azotobacter vinelandii , Molibdoferredoxina , Nitrogenasa , Selenio , Azufre , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/química , Molibdoferredoxina/metabolismo , Molibdoferredoxina/química , Selenio/metabolismo , Selenio/química , Azufre/metabolismo , Azufre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
8.
Phys Med Biol ; 69(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38729205

RESUMEN

Objective.Electron paramagnetic resonance (EPR) imaging is an advanced in vivo oxygen imaging modality. The main drawback of EPR imaging is the long scanning time. Sparse-view projections collection is an effective fast scanning pattern. However, the commonly-used filtered back projection (FBP) algorithm is not competent to accurately reconstruct images from sparse-view projections because of the severe streak artifacts. The aim of this work is to develop an advanced algorithm for sparse reconstruction of 3D EPR imaging.Methods.The optimization based algorithms including the total variation (TV) algorithm have proven to be effective in sparse reconstruction in EPR imaging. To further improve the reconstruction accuracy, we propose the directional TV (DTV) model and derive its Chambolle-Pock solving algorithm.Results.After the algorithm correctness validation on simulation data, we explore the sparse reconstruction capability of the DTV algorithm via a simulated six-sphere phantom and two real bottle phantoms filled with OX063 trityl solution and scanned by an EPR imager with a magnetic field strength of 250 G.Conclusion.Both the simulated and real data experiments show that the DTV algorithm is superior to the existing FBP and TV-type algorithms and a deep learning based method according to visual inspection and quantitative evaluations in sparse reconstruction of EPR imaging.Significance.These insights gained in this work may be used in the development of fast EPR imaging workflow of practical significance.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Espectroscopía de Resonancia por Spin del Electrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
9.
J Magn Reson ; 362: 107690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692250

RESUMEN

This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.


Asunto(s)
Campos Electromagnéticos , Diseño de Equipo , Fantasmas de Imagen , Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Reproducibilidad de los Resultados , Oximetría/instrumentación , Oximetría/métodos
10.
Biochem Soc Trans ; 52(3): 1071-1083, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38778760

RESUMEN

Conformational changes of catalytically-important structural elements are a key feature of the regulation mechanisms of protein kinases and are important for dictating inhibitor binding modes and affinities. The lack of widely applicable methods for tracking kinase conformational changes in solution has hindered our understanding of kinase regulation and our ability to design conformationally selective inhibitors. Here we provide an overview of two recently developed methods that detect conformational changes of the regulatory activation loop and αC-helix of kinases and that yield complementary information about allosteric mechanisms. An intramolecular Förster resonance energy transfer-based approach provides a scalable platform for detecting and classifying structural changes in high-throughput, as well as quantifying ligand binding cooperativity, shedding light on the energetics governing allostery. The pulsed electron paramagnetic resonance technique double electron-electron resonance provides lower throughput but higher resolution information on structural changes that allows for unambiguous assignment of conformational states and quantification of population shifts. Together, these methods are shedding new light on kinase regulation and drug interactions and providing new routes for the identification of novel kinase inhibitors and allosteric modulators.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Conformación Proteica , Proteínas Quinasas , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Regulación Alostérica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Unión Proteica , Modelos Moleculares
11.
Mol Imaging Biol ; 26(3): 459-472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811467

RESUMEN

PURPOSE: Our study aimed to accelerate the acquisition of four-dimensional (4D) spectral-spatial electron paramagnetic resonance (EPR) imaging for mouse tumor models. This advancement in EPR imaging should reduce the acquisition time of spectroscopic mapping while reducing quality degradation for mouse tumor models. PROCEDURES: EPR spectra under magnetic field gradients, called spectral projections, were partially measured. Additional spectral projections were later computationally synthesized from the measured spectral projections. Four-dimensional spectral-spatial images were reconstructed from the post-processed spectral projections using the algebraic reconstruction technique (ART) and assessed in terms of their image qualities. We applied this approach to a sample solution and a mouse Hs766T xenograft model of human-derived pancreatic ductal adenocarcinoma cells to demonstrate the feasibility of our concept. The nitroxyl radical imaging agent 2H,15N-DCP was exogenously infused into the mouse xenograft model. RESULTS: The computation code of 4D spectral-spatial imaging was tested with numerically generated spectral projections. In the linewidth mapping of the sample solution, we achieved a relative standard uncertainty (standard deviation/| mean |) of 0.76 µT/45.38 µT = 0.017 on the peak-to-peak first-derivative EPR linewidth. The qualities of the linewidth maps and the effect of computational synthesis of spectral projections were examined. Finally, we obtained the three-dimensional linewidth map of 2H,15N-DCP in a Hs766T tumor-bearing leg in vivo. CONCLUSION: We achieved a 46.7% reduction in the acquisition time of 4D spectral-spatial EPR imaging without significantly degrading the image quality. A combination of ART and partial acquisition in three-dimensional raster magnetic field gradient settings in orthogonal coordinates is a novel approach. Our approach to 4D spectral-spatial EPR imaging can be applied to any subject, especially for samples with less variation in one direction.


Asunto(s)
Estudios de Factibilidad , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Línea Celular Tumoral , Ratones , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Procesamiento de Imagen Asistido por Computador/métodos
12.
J Inorg Biochem ; 257: 112594, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749080

RESUMEN

We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.


Asunto(s)
Proteínas Bacterianas , Catalasa , Formiatos , Helicobacter pylori , Oxidación-Reducción , Helicobacter pylori/enzimología , Espectroscopía de Resonancia por Spin del Electrón/métodos , Catalasa/metabolismo , Catalasa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Formiatos/química , Formiatos/metabolismo , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo
13.
Chem Rev ; 124(10): 6501-6542, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722769

RESUMEN

Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.


Asunto(s)
Aminoácidos , Aminoácidos/química , Proteínas/química , Proteínas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Microscopía/métodos , Espectroscopía de Resonancia Magnética/métodos , Humanos
14.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38679935

RESUMEN

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Asunto(s)
Fotosíntesis , Oxígeno Singlete , Tilacoides , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Tilacoides/metabolismo , Tilacoides/química , Detección de Spin/métodos , Clorofila/metabolismo , Clorofila/química , Spinacia oleracea/metabolismo , Spinacia oleracea/química , Luz
15.
J Phys Chem B ; 128(14): 3350-3359, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564809

RESUMEN

Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote Nε nitrogens and (ii) the amide Np using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the CuII site and coordinating ligands. Furthermore, our calculations support the assignment of Np to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.


Asunto(s)
Nativos Alasqueños , Azurina , Azurina/genética , Azurina/química , Cobre/química , Nitrógeno/química , Mutación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Amidas
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673758

RESUMEN

Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme iron-nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence of iron-nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of complicated tumor-host interactions.


Asunto(s)
Ditiocarba , Hemoglobinas , Óxido Nítrico , Animales , Óxido Nítrico/metabolismo , Ditiocarba/farmacología , Ditiocarba/química , Ratones , Hemoglobinas/metabolismo , Hemoglobinas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Detección de Spin/métodos , Neovascularización Patológica/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos DBA , Compuestos Ferrosos/química
17.
Eur Biophys J ; 53(4): 171-181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597963

RESUMEN

Polymeric micelles are nanocarriers for drug, protein and gene delivery due to their unique core/shell structure, which encapsulates and protects therapeutic cargos with diverse physicochemical properties. However, information regarding the micellar nanoenvironment's fluidity can provide unique insight into their makeup. In this study, we used electron paramagnetic resonance (EPR) spectroscopy to study free radical spin probe (5-doxylstearate methyl ester, 5-MDS, and 16-doxylstearic acid, 16-DS) behaviour in methoxy-poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-PBCL) and methoxy-poly(ethylene oxide)-poly(ε-caprolactone) (PEO-PCL) polymeric micelles. Spin probes provided information about the spectroscopic rotational correlation time (τ, s) and the spectroscopic partition parameter F. We hypothesized that spin probes would partition into the polymeric micelles, and these parameters would be calculated. The results showed that both 5-MDS and 16-DS spectra were modulated in the presence of polymeric micelles. Based on τ values, 5-MDS revealed that PEO-PCL (τ = 3.92 ± 0.26 × 10-8 s) was more fluid than PEO-PBCL (τ = 7.15 ± 0.63 × 10-8 s). The F parameter, however, could not be calculated due to the rotational hindrance of the probe within the micelles. With 16-DS, more probe rotation was observed, and although the F parameter could be calculated, it was not helpful to distinguish the micelles' fluidity. Also, doxorubicin-loading interfered with the spin probes, particularly for 16-DS. However, using simulations, we could distinguish the hydrophilic and hydrophobic components of the 16-DS probe. The findings suggest that EPR spectroscopy is a valuable method for determining core fluidity in polymeric micelles.


Asunto(s)
Micelas , Espectroscopía de Resonancia por Spin del Electrón/métodos , Poliésteres/química , Polietilenglicoles/química , Marcadores de Spin , Polímeros/química
18.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574976

RESUMEN

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Asunto(s)
Estudios de Factibilidad , Fluorodesoxiglucosa F18 , Glucosa , Imagen Multimodal , Oxidación-Reducción , Animales , Humanos , Ratones , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Imagen Multimodal/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Butionina Sulfoximina/farmacología , Autorradiografía , Células HCT116 , Neoplasias del Colon/metabolismo , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/patología , Radiofármacos/metabolismo , Tomografía de Emisión de Positrones/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Glutatión/metabolismo , Ratones Desnudos
19.
J Magn Reson ; 361: 107652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457937

RESUMEN

Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time. For each projection, we usually need to collect the projection many times and then average them to achieve high signal-to-noise ratio (SNR). One approach to fast scan is to reduce the repeating time for each projection. While the projections would be noisy and thus the traditional commonly-use filtered backprojection (FBP) algorithm would not be capable of accurately reconstructing images. Optimization-based iterative algorithms may accurately reconstruct images from noisy projections for they may incorporate prior information into optimization models. Based on the total variation (TV) algorithms for EPR imaging, in this work, we propose a directional TV (DTV) algorithm to further improve the reconstruction accuracy. We construct the DTV constrained, data divergence minimization (DTVcDM) model, derive its Chambolle-Pock (CP) solving algorithm, validate the correctness of the whole algorithm, and perform evaluations via simulated and real data. The experimental results show that the DTV algorithm outperforms the existing TV and FBP algorithms in fast EPR imaging. Compared to the standard FBP algorithm, the proposed algorithm may achieve 10 times of acceleration.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fantasmas de Imagen , Imagenología Tridimensional/métodos , Oxígeno , Procesamiento de Imagen Asistido por Computador/métodos
20.
Mol Imaging Biol ; 26(3): 373-381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548994

RESUMEN

Molecular oxygen and its thermodynamic transformation drive nearly all life processes. Quantitative measurement and imaging of oxygen in living systems is of fundamental importance for the study of life processes and their aberrations-disease- many of which are affected by hypoxia, or low levels of oxygen. Cancer is among the disease processes profoundly affected by hypoxia. Electron paramagnetic resonance has been shown to provide remarkably accurate images of normal and cancerous tissue. In this review, we emphasize the reactivity of molecular oxygen particularly highlighting the metabolic processes of living systems to store free energy in the reactants. The history of hypoxic resistance of living systems to cytotoxic therapy, particularly radiation therapy is also reviewed. The measurement and imaging of molecular oxygen with pulse spin lattice relaxation (SLR) electron paramagnetic resonance (EPR) is reviewed briefly. This emphasizes the advantages of the spin lattice relaxation based measurement paradigm to reduce the sensitivity of the measurement to the presence of the oxygen sensing probe itself. The involvement of a novel small mammal external beam radiation delivery system is described. This enables an experimental paradigm based on control by radiation of the last resistant clonogen. This is much more specific for tumor cure than growth delay assays which primarily reflects control of tumor cells most sensitive to therapy.


Asunto(s)
Oxígeno , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno/metabolismo , Oxígeno/química , Animales , Humanos , Mamíferos/metabolismo , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA