Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.789
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273099

RESUMEN

Cholesterol homeostasis is pivotal for cellular function. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also abbreviated as SOAT1, is an enzyme responsible for catalyzing the storage of excess cholesterol to cholesteryl esters. ACAT1 is an emerging target to treat diverse diseases including atherosclerosis, cancer, and neurodegenerative diseases. F12511 is a high-affinity ACAT1 inhibitor. Previously, we developed a stealth liposome-based nanoparticle to encapsulate F12511 to enhance its delivery to the brain and showed its efficacy in treating a mouse model for Alzheimer's disease (AD). In this study, we introduce F26, a close derivative of F12511 metabolite in rats. F26 was encapsulated in the same DSPE-PEG2000/phosphatidylcholine (PC) liposome-based nanoparticle system. We employed various in vitro and in vivo methodologies to assess F26's efficacy and toxicity compared to F12511. The results demonstrate that F26 is more effective and durable than F12511 in inhibiting ACAT1, in both mouse embryonic fibroblasts (MEFs), and in multiple mouse tissues including the brain tissues, without exhibiting any overt systemic or neurotoxic effects. This study demonstrates the superior pharmacokinetic and safety profile of F26 in wild-type mice, and suggests its therapeutic potential against various neurodegenerative diseases including AD.


Asunto(s)
Liposomas , Nanopartículas , Esterol O-Aciltransferasa , Animales , Liposomas/química , Ratones , Nanopartículas/química , Esterol O-Aciltransferasa/antagonistas & inhibidores , Esterol O-Aciltransferasa/metabolismo , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Acetil-CoA C-Acetiltransferasa/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Ratas , Masculino , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo
2.
Commun Biol ; 7(1): 1089, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237833

RESUMEN

Viruses depend on host metabolic pathways and flaviviruses are specifically linked to lipid metabolism. During dengue virus infection lipid droplets are degraded to fuel replication and Zika virus (ZIKV) infection depends on triglyceride biosynthesis. Here, we systematically investigated the neutral lipid-synthesizing enzymes diacylglycerol O-acyltransferases (DGAT) and the sterol O-acyltransferase (SOAT) 1 in orthoflavivirus infection. Downregulation of DGAT1 and SOAT1 compromises ZIKV infection in hepatoma cells but only SOAT1 and not DGAT inhibitor treatment reduces ZIKV infection. DGAT1 interacts with the ZIKV capsid protein, indicating that protein interaction might be required for ZIKV replication. Importantly, inhibition of SOAT1 severely impairs ZIKV infection in neural cell culture models and cerebral organoids. SOAT1 inhibitor treatment decreases extracellular viral RNA and E protein level and lowers the specific infectivity of virions, indicating that ZIKV morphogenesis is compromised, likely due to accumulation of free cholesterol. Our findings provide insights into the importance of cholesterol and cholesterol ester balance for efficient ZIKV replication and implicate SOAT1 as an antiviral target.


Asunto(s)
Organoides , Esterol O-Aciltransferasa , Replicación Viral , Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Virus Zika/fisiología , Organoides/virología , Organoides/metabolismo , Replicación Viral/efectos de los fármacos , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/antagonistas & inhibidores , Animales , Antivirales/farmacología
3.
J Enzyme Inhib Med Chem ; 39(1): 2403736, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39316789

RESUMEN

Acyl-CoA: cholesterol acyltransferase (ACAT), a pivotal enzyme in the absorption and metabolism of cholesterol, is primarily responsible for intracellular esterification. ACAT inhibition is expected to diminish plasma lipid levels by impeding intestinal cholesterol absorption, thereby preventing the progression of atherosclerotic lesions. A previous study shows that selective inhibition of ACAT2 significantly mitigated hypercholesterolaemia and atherosclerosis in mouse models. Therefore, the need for ACAT2 selective inhibitors becomes particularly urgent. In this study, we established a multilayer virtual screening workflow and subjected biologically evaluated representative compounds to enzyme inhibitory assays. The experimental results indicated that the two compounds, STL565001 (inhibition rate at 25 µM: 75.7 ± 27.8%, selectivity = 6) and STL528213 (inhibition rate at 25 µM: 87.8 ± 12.4%, selectivity = 13), demonstrated robust activity against ACAT2, displaying greater selectivity for ACAT2 than for ACAT1. The molecular mechanisms governing the inhibitory activities of the selected compounds were systematically elucidated using computational approaches. In addition, hotspot residues in ACAT2 that are crucial for ligand binding were successfully identified. In summary, we devised a multilayer screening scheme to expeditiously and efficiently identify compounds with enzyme inhibitory activity, offering novel scaffolds for subsequent drug design centred on ACAT2 targets.


Asunto(s)
Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Esterol O-Aciltransferasa 2 , Esterol O-Aciltransferasa , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Esterol O-Aciltransferasa/antagonistas & inhibidores , Esterol O-Aciltransferasa/metabolismo , Humanos , Estructura Molecular , Farmacóforo
4.
Food Chem ; 458: 140300, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964108

RESUMEN

Phytosterols are structurally similar to cholesterol but they are much less absorbed (<2%) than cholesterol (>50%) in the intestine. We hypothesize that phytosterols are poor substrates of intestinal acyl-CoA: cholesterol acyltransferase 2 (ACAT2), and thus minimal phytosterol esters are formed and packed into chylomicrons, leading to their low absorption. Two isotope tracing models, including a radioactive hamster microsomal ACAT2 reaction model and a differentiated Caco-2 cell model, were established to examine the specificity of ACAT2 to various sterols, including cholesterol, sitosterol, stigmasterol, and campesterol. Both models consistently demonstrated that only cholesterol but not phytosterols could be efficiently esterified by ACAT2 in a time- and dose-dependent manner. Molecular docking further suggested that unfavorable interactions existed between ACAT2 and phytosterols. In conclusion, phytosterols are poor substrates of ACAT2 and thus minimally absorbed. This work provides a theoretical basis for the use of phytosterol-based supplements in treating dyslipidemia and preventing heart diseases.


Asunto(s)
Colesterol , Fitosteroles , Fitosteroles/metabolismo , Fitosteroles/química , Humanos , Animales , Células CACO-2 , Colesterol/metabolismo , Colesterol/química , Cricetinae , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/química , Absorción Intestinal , Esterol O-Aciltransferasa 2/metabolismo , Esterol O-Aciltransferasa 2/química , Simulación del Acoplamiento Molecular
5.
J Biochem Mol Toxicol ; 38(6): e23733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770938

RESUMEN

The aim of this investigation was to evaluate the differential expression of the sterol O-acyltransferase 1 (SOAT1) protein in gallbladder cancer tissues and cells, investigate the impact of Avastin on the proliferation, migration, invasion capabilities of gallbladder cancer cells, and its potential to induce cell apoptosis. Immunohistochemical analysis of samples from 145 gallbladder cancer patients was conducted, along with analysis of SOAT1 protein, mRNA expression levels, and cholesterol content in gallbladder cancer cell lines SGC-996, NOZ, and gallbladder cancer (GBC)-SD using Western blot and q-PCR techniques. Furthermore, the effects of Avastin on the proliferation, migration, and invasion capabilities of these gallbladder cancer cell lines were studied, and its ability to induce cell apoptosis was evaluated using flow cytometry, Western blot, and immunohistochemical methods. Additionally, gene expression and pathway analysis were performed, and the synergistic therapeutic effects of Avastin combined with gemcitabine were tested in a gallbladder cancer xenograft model. The study found that SOAT1 expression was significantly upregulated in GBC tissues and positively correlated with lymph node metastasis and TNM staging. In vitro experiments demonstrated that Avastin significantly inhibited the proliferation, migration, and invasion capabilities of SGC-996 and GBC-SD cell lines and induced apoptosis. RNA sequencing analysis revealed multiple differentially expressed genes in cells treated with Avastin, primarily enriched in biological pathways such as signaling transduction, malignant tumors, and the immune system. In vivo, experiments confirmed that Avastin could effectively suppress tumor growth in a gallbladder cancer xenograft model and enhanced the treatment efficacy when used in combination with gemcitabine. Overall, these findings provide new insights and strategies for targeted therapy in gallbladder cancer.


Asunto(s)
Neoplasias de la Vesícula Biliar , Esterol O-Aciltransferasa , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159512, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761895

RESUMEN

OBJECTIVE: Excess cholesterol storage can induce the formation of cholesterol crystals in hepatocyte lipid droplets. Such crystals distinguish metabolic dysfunction associated steatohepatitis (MASH) from simple steatosis and may underlie its pathogenesis by causing cell damage that triggers liver inflammation. The mechanism linking cholesterol excess to its crystallization in lipid droplets is unclear. As cholesteryl esters localize to and accumulate in lipid droplets more readily than unesterified free cholesterol, we investigated whether cholesterol esterification by sterol O-acyltransferase (SOAT), also known as acyl co-A cholesterol acyltransferase (ACAT), is required for hepatocyte lipid droplet crystal formation. METHOD: Cholesterol crystals were measured in cholesterol loaded Hep3B hepatocytes, RAW264.7 macrophages, and mouse liver using polarizing light microscopy. We examined the effect of blocking SOAT activity on crystal formation and compared these results to features of cholesterol metabolism and the progression to intracellular crystal deposits. RESULTS: Cholesterol loading of Hep3B cells caused robust levels of lipid droplet localized crystal formation in a dose- and time-dependent manner. Co-treatment with SOAT inhibitors and genetic ablation of SOAT1 blocked crystal formation. SOAT inhibitor also blocked crystal formation in low density lipoprotein (LDL) treated Hep3B cells, acetylated LDL treated RAW 264.7 macrophages, and in the liver of mice genetically predisposed to hepatic cholesterol overload and in mice with cholesterol enriched diet-induced MASH. CONCLUSION: SOAT1-mediated esterification may underlie cholesterol crystals associated with MASH by concentrating it in lipid droplets. These findings imply that inhibiting hepatocyte SOAT1 may be able to alleviate cholesterol associated MASH. Moreover, that either a lipid droplet localized cholesteryl ester hydrolase is required for cholesterol crystal formation, or the crystals are composed of cholesteryl ester.


Asunto(s)
Colesterol , Hepatocitos , Gotas Lipídicas , Esterol O-Aciltransferasa , Animales , Humanos , Masculino , Ratones , Colesterol/metabolismo , Ésteres del Colesterol/metabolismo , Cristalización , Esterificación , Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Células RAW 264.7 , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/genética
7.
Cell Death Dis ; 15(5): 325, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724499

RESUMEN

Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.


Asunto(s)
Carcinoma Hepatocelular , Colesterol , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Esterol O-Aciltransferasa , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Colesterol/metabolismo , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/genética , Animales , Ratones , Masculino , Ratones Desnudos , Línea Celular Tumoral , Movimiento Celular , Femenino , Ratones Endogámicos BALB C , Sesquiterpenos/farmacología , Regulación Neoplásica de la Expresión Génica
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673803

RESUMEN

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Esterol O-Aciltransferasa , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Femenino , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Proteína Niemann-Pick C1 , Niño , Polimorfismo de Nucleótido Simple , Animales , Ratones , Fenotipo , Adolescente , Preescolar , Genes Modificadores , Adulto , Alelos , Índice de Severidad de la Enfermedad , Genotipo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adulto Joven
9.
Org Lett ; 26(9): 1807-1812, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38393343

RESUMEN

We have identified the biosynthetic gene cluster (hvm) for the sterol O-acyltransferase inhibitor helvamide (1) from the genome of Aspergillus rugulosus MST-FP2007. Heterologous expression of hvm in A. nidulans produced a previously unreported analog helvamide B (5). An α-ketoglutarate-dependent oxygenase Hvm1 was shown to catalyze intramolecular cyclization of 1 to yield 5. The biosynthetic branch to the related hancockiamides and helvamides was found to be controlled by the substrate selectivity of monomodular nonribosomal peptide synthetases.


Asunto(s)
Ácidos Cetoglutáricos , Oxigenasas , Oxigenasas/genética , Oxigenasas/metabolismo , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Ciclización , Familia de Multigenes , Péptido Sintasas/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5989-5999, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38376541

RESUMEN

Ferroptosis, characterized by lipid peroxidation, plays a significant role in the pathogenesis of acute pancreatitis (AP). While sterol O-acyltransferase 2 (Soat2) is known for its crucial regulatory role in cholesterol homeostasis, its involvement in the development of AP remains unreported. We conducted this study to identify the pivotal role of Soat2 in AP using transcriptomic databases. Subsequently, we confirmed its alterations through both in vitro and in vivo experimental models. Furthermore, we performed intervention with the Soat2 inhibitor avasimibe to evaluate pancreatic tissue pathology and serum enzymatic levels and observe inflammatory cell infiltration through immunohistochemistry. Additionally, changes in indicators related to ferroptosis were also observed. The results showed that in the AP mouse model, the protein and mRNA levels of Soat2 were significantly increased. Following avasimibe administration, there was a decrease in serum amylase levels, reduction in pancreatic tissue pathological damage, and attenuation of inflammatory cell infiltration. Furthermore, avasimibe administration resulted in downregulation of ferroptosis-related indicators. In conclusion, our findings suggest that the Soat2 inhibitor avasimibe protects against AP in mice through inhibition of the ferroptosis.


Asunto(s)
Células Acinares , Ferroptosis , Pancreatitis , Esterol O-Aciltransferasa , Animales , Ferroptosis/efectos de los fármacos , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Pancreatitis/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Masculino , Ratones , Esterol O-Aciltransferasa/antagonistas & inhibidores , Esterol O-Aciltransferasa/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Páncreas/patología , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Humanos
11.
Chin J Physiol ; 66(6): 456-465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149558

RESUMEN

Recently, evidence has shown that microRNA-100-3p (miR-100-3p) has been revealed as a tumor suppressor in diverse human diseases, while its capability in lung cancer warrants further validation. In this work, we aimed to discuss the impact of sevoflurane on biological functions of lung cancer cells by modulating the miR-100-3p/sterol O-acyltransferase 1 (SOAT1) axis. Lung cancer cell lines (A549 and H460) were treated with various concentrations of sevoflurane. Cell viability, proliferation, migration, and invasion were evaluated using MTT, colony formation, wound healing, and transwell assays. Moreover, miR-100-3p and SOAT1 expressions were evaluated by reverse transcription-quantitative polymerase chain reaction in lung cancer cells. The target interaction between miR-100-3p and SOAT1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. The findings of our work demonstrated that sevoflurane impeded the abilities on viability, proliferation, migration, and invasion of A549 and H460 cells. The expression of miR-100-3p was reduced, and SOAT1 expression was elevated in lung cancer cells. miR-100-3p targeted SOAT1. Besides, sevoflurane could lead to expressed improvement of miR-100-3p or limitation of SOAT1. Downregulation of miR-100-3p or upregulation of SOAT1 restored the suppression of sevoflurane on abilities of viability, proliferation, migration, and invasion in A549 and H460 cells. In the rescue experiment, downregulation of SOAT1 reversed the impacts of downregulation of miR-100-3p on sevoflurane on lung cancer cells. Collectively, our study provides evidence that sevoflurane restrained the proliferation and invasion in lung cancer cells by modulating the miR-100-3p/SOAT1 axis. This article provides a new idea for further study of the pathogenesis of lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Sevoflurano , Sevoflurano/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , MicroARNs/metabolismo , Esterol O-Aciltransferasa/metabolismo , Línea Celular Tumoral , Células A549 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Transducción de Señal
12.
Biochem Biophys Res Commun ; 688: 149164, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37951155

RESUMEN

A glucagon-like peptide 1 receptor agonist (GLP-1 RA) semaglutide was approved for the treatment of obesity by the Food and Drug Administration. However, it can cause gastrointestinal events at high doses, limiting its broader use. Combining drugs with multiple mechanisms of action could enhance the weight-reducing effects while minimizing side effects. To this end, we investigated the combined effects of semaglutide and avasimibe, an acyl-CoA:cholesterol acyltransferase 1 (ACAT1) inhibitor, on weight reduction in diet-induced obesity mice. Two cohorts of mice were used: In cohort 1, mice were fed a high-fat (HF) diet for 12 weeks and then randomly assigned to the vehicle, avasimibe [10 mg/kg body weight (BW)], semaglutide (0.4 mg/kg BW), or combination groups. The drugs were administered via subcutaneous (sc) injections on a daily basis. In cohort 2, mice were fed an HF diet for 8 weeks and randomly assigned to the same four groups, but avasimibe was administered at a dose of 20 mg/kg BW, and the drugs were administered every 3 days. In cohort 1, semaglutide initially reduced food intake initially, but this effect was diminished with prolonged administration. Avasimibe, on the other hand, did not affect food intake but prevented weight gain to a lesser extent than semaglutide. Importantly, the combination treatment resulted in the greatest percentage of body weight reduction, along with lower plasma glucose and leptin levels compared to the semaglutide single-treatment group. Cohort 2 confirmed that the superior weight loss in the combination group compared to the other three groups was largely due to a significant reduction in fat mass. Histological analysis of inguinal adipose tissue showed smaller adipocyte size across all treatment groups compared to the vehicle group, with no significant differences among the treatment groups. Collectively, these findings suggest combining semaglutide and avasimibe could be an effective approach to weight management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Esterol O-Aciltransferasa , Humanos , Ratones , Animales , Roedores , Aciltransferasas , Acilcoenzima A , Obesidad/tratamiento farmacológico , Obesidad/etiología , Dieta , Pérdida de Peso , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico
13.
Appl Environ Microbiol ; 89(11): e0100123, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37874286

RESUMEN

IMPORTANCE: Since the global market for sterols and vitamin D are grown with a high compound annual growth rate, a sustainable source of these compounds is required to keep up with the increasing demand. Thraustochytrid is a marine oleaginous microorganism that can synthesize several sterols, which are stored as SE in lipid droplets. DGAT2C is an unconventional SE synthase specific to thraustochytrids. Although the primary structure of DGAT2C shows high similarities with that of DGAT, DGAT2C utilizes sterol as an acceptor substrate instead of diacylglycerol. In this study, we examined more detailed enzymatic properties, intracellular localization, and structure-activity relationship of DGAT2C. Furthermore, we successfully developed a method to increase sterol and provitamin D3 productivity of thraustochytrid by more than threefold in the process of elucidating the function of the DGAT2C-specific N-terminal region. Our findings could lead to sustainable sterol and vitamin D production using thraustochytrid.


Asunto(s)
Esterol O-Aciltransferasa , Esteroles , Gotas Lipídicas , Vitamina D , Diacilglicerol O-Acetiltransferasa/genética
14.
Nat Commun ; 14(1): 3100, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248213

RESUMEN

Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1's fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.


Asunto(s)
Aciltransferasas , Diacilglicerol O-Acetiltransferasa , Aciltransferasas/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Lipogénesis , Esterol O-Aciltransferasa/química , Triglicéridos
15.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982602

RESUMEN

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.


Asunto(s)
Enfermedad de Alzheimer , Colesterol , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Esteroles/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/metabolismo
16.
J Atheroscler Thromb ; 30(8): 1070-1082, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384970

RESUMEN

Lecithin-cholesterol acyltransferase (LCAT) plays a significant role in the progression from premature to mature high-density lipoprotein (HDL) in circulation. Consequently, primary or secondary LCAT deletion or reduction naturally results in low serum HDL cholesterol levels. Recently, rare cases of acquired HDL deficiency with LCAT autoantibodies have been reported, mainly from Japan, where LCAT autoantibodies of immunoglobulin G (IgG) caused the HDL deficiency. Here to our knowledge, we report for the first time two cases of acquired HDL deficiency caused by IgG4 linked LCAT autoantibodies with or without a high serum IgG4 level. Furthermore, these cases can extend to a new concept of "IgG4 autoimmune disease" from the viewpoint of verifying the serum autoantibody and/or renal histopathology.


Asunto(s)
Deficiencia de la Lecitina Colesterol Aciltransferasa , Lecitinas , Humanos , Esterol O-Aciltransferasa , Autoanticuerpos , Fosfatidilcolina-Esterol O-Aciltransferasa , Lipoproteínas HDL , Inmunoglobulina G , HDL-Colesterol
18.
Indian J Dermatol Venereol Leprol ; 89(3): 411-415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35962507

RESUMEN

Background Alopecia areata is a chronic inflammatory skin disease. Oxidative stress may contribute to the pathogenesis of this condition. Aim To evaluate the serum oxidative stress markers and antioxidant capacity in patients with alopecia areata. Methods This cross-sectional study was performed on 40 patients with alopecia areata and 40 healthy controls. The fasting blood sugar, C-reactive protein, lipid profile, and serum oxidative markers, including advanced glycation end products and advanced oxidation protein products, were measured in this study. Also, antioxidant enzymes, including paraoxonase-1, lecithin-cholesterol acyltransferase and serum ferric-reducing antioxidant power, were determined. Results The serum levels of advanced glycation end products and advanced oxidation protein products were significantly higher in patients with alopecia areata, compared to the controls (P < 0.001), whereas the levels of ferric-reducing antioxidant power, paraoxonase-1 and lecithin-cholesterol acyltransferase were significantly lower in patients with alopecia areata, compared to the controls (P < 0.001). The mean fasting blood sugar level was significantly higher in patients with alopecia areata, compared to the controls. The ferric reducing antioxidant power level was significantly associated with the percentage of hair loss (P = 0.01, r = 0.4) and the serum C-reactive protein level (P = 0.03, r = -0.3) in patients with alopecia areata. Limitations Since the current study had a cross-sectional design, no cause-effect relationship was established between alopecia areata and oxidative stress. The sample size of our study was also small. Conclusion Based on the present results, the oxidant-antioxidant enzymatic system is impaired in alopecia areata due to the increased oxidative products and decreased antioxidant activity.


Asunto(s)
Alopecia Areata , Antioxidantes , Humanos , Antioxidantes/metabolismo , Alopecia Areata/metabolismo , Estudios Transversales , Proteína C-Reactiva , Arildialquilfosfatasa , Productos Avanzados de Oxidación de Proteínas/metabolismo , Glucemia , Lecitinas , Esterol O-Aciltransferasa/metabolismo , Estrés Oxidativo , Biomarcadores , Enfermedad Crónica
19.
J Med Chem ; 65(24): 16062-16098, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36473091

RESUMEN

Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.


Asunto(s)
Acilcoenzima A , Esterol O-Aciltransferasa , Humanos , Colesterol
20.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555105

RESUMEN

Metabolic syndrome is associated with the development of chronic kidney disease (CKD). We previously demonstrated that aged kidneys are prone to developing tertiary lymphoid tissues (TLTs) and sustain inflammation after injury, leading to CKD progression; however, the relationship between renal TLT and metabolic syndrome is unknown. In this study, we demonstrated that a high-fat diet (HFD) promoted renal TLT formation and inflammation via sterol O-acyltransferase (SOAT) 1-dependent mechanism. Mice fed a HFD prior to ischemic reperfusion injury (IRI) exhibited pronounced renal TLT formation and sustained inflammation compared to the controls. Untargeted lipidomics revealed the increased levels of cholesteryl esters (CEs) in aged kidneys with TLT formation after IRI, and, consistently, the Soat1 gene expression increased. Treatment with avasimibe, a SOAT inhibitor, attenuated TLT maturation and renal inflammation in HFD-fed mice subjected to IRI. Our findings suggest the importance of SOAT1-dependent CE accumulation in the pathophysiology of CKDs associated with TLT.


Asunto(s)
Enfermedades Metabólicas , Síndrome Metabólico , Insuficiencia Renal Crónica , Daño por Reperfusión , Animales , Ratones , Síndrome Metabólico/metabolismo , Dieta Alta en Grasa/efectos adversos , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Riñón/metabolismo , Tejido Linfoide/metabolismo , Inflamación/metabolismo , Fibrosis , Insuficiencia Renal Crónica/metabolismo , Enfermedades Metabólicas/metabolismo , Daño por Reperfusión/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA