Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Food Chem ; 458: 140300, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964108

RESUMEN

Phytosterols are structurally similar to cholesterol but they are much less absorbed (<2%) than cholesterol (>50%) in the intestine. We hypothesize that phytosterols are poor substrates of intestinal acyl-CoA: cholesterol acyltransferase 2 (ACAT2), and thus minimal phytosterol esters are formed and packed into chylomicrons, leading to their low absorption. Two isotope tracing models, including a radioactive hamster microsomal ACAT2 reaction model and a differentiated Caco-2 cell model, were established to examine the specificity of ACAT2 to various sterols, including cholesterol, sitosterol, stigmasterol, and campesterol. Both models consistently demonstrated that only cholesterol but not phytosterols could be efficiently esterified by ACAT2 in a time- and dose-dependent manner. Molecular docking further suggested that unfavorable interactions existed between ACAT2 and phytosterols. In conclusion, phytosterols are poor substrates of ACAT2 and thus minimally absorbed. This work provides a theoretical basis for the use of phytosterol-based supplements in treating dyslipidemia and preventing heart diseases.


Asunto(s)
Colesterol , Fitosteroles , Fitosteroles/metabolismo , Fitosteroles/química , Humanos , Animales , Células CACO-2 , Colesterol/metabolismo , Colesterol/química , Cricetinae , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/química , Absorción Intestinal , Esterol O-Aciltransferasa 2/metabolismo , Esterol O-Aciltransferasa 2/química , Simulación del Acoplamiento Molecular
2.
Cancer Rep (Hoboken) ; 7(2): e1956, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38213102

RESUMEN

BACKGROUND: Acyl-coenzyme A cholesterol acyltransferase (ACAT) is a membrane-binding enzyme localized in the endoplasmic reticulum. ACAT2 can promote the development of colon cancer, but its efficacy in lung adenocarcinoma (LUAD) remains uncertain. METHOD: ACAT2 expression was performed by using the TIMER2.0 database. The GEPIA database was utilized to analyze the correlation between ACAT2 expression and pathological stage of the tumor. Clinical prognosis was assessed through the Kaplan-Meier analysis. The CancerSEA database was employed to scrutinize the correlations between the ACAT2 expression and the functional status of various tumors, which were subsequently visualized as a heatmap. Furthermore, molecular interaction network analysis was performed by the STRING tool. RESULTS: High ACAT2 expression was associated with a poor DFS and OS in LUAD patients. Cox regression analysis indicated that the poor outcomes may be related to tumor stage, nodal stage, distant metastatic stage. ACAT2 was found to play a crucial role in various biological processes, including the cell cycle, DNA repair, DNA damage response, and proliferation. Enrichment pathway analysis revealed four ACAT2 related genes, ACOX1, EHHADH, OXCT1, and DLAT. CONCLUSION: Our study showed that ACAT2 was upregulated in LUAD, and had a worse survival. ACAT2 could be a novel predictive biomarker and therapeutic target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Esterol O-Aciltransferasa 2 , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/patología , Pronóstico
3.
Hereditas ; 160(1): 2, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36694223

RESUMEN

BACKGROUND: Breast cancer is a heterogeneous group of diseases. The polarization of CD4+ T helper (Th) lymphocytes (mainly Th1 and Th2) may differ in breast cancers with different outcomes, but this has not been fully validated. METHODS: This study is a bioinformatic analysis, in which differentially expressed genes (DEGs) were identified in patients with low and high Th1/Th2 ratios. And then, DEG functions, hub genes and independent predictors were determined. RESULTS: Low Th1/Th2 ratio was associated with poor outcome in Luminal A and basal-like breast cancer (p < 0.05). GSEA and KEGG analysis of DEGs obtained from comparing low and high Th1/Th2 ratios illuminated downregulation of immune-related gene sets and pathways affecting Th1/Th2 balance toward Th2 polarization (p < 0.05). Survival and Cox analyses of all the DEGs confirmed CCL1 and MYH6 were independent protective factors and IFNK and SOAT2 were independent risk factors for basal-like breast cancer (95%CI: 1.06-2.5, p = 0.026). Then a four-gene signature was constructed and achieved a promising prognostic value (C-index = 0.82; AUC = 0.826). CONCLUSIONS: Low Th1/Th2 ratio predicts poor outcome in Luminal A and Basal-like breast cancer, and downregulation of immune-related gene sets and pathways contribute to Th1/Th2 balance toward Th2 polarization. CCL1, MYH6, IFNK, and SOAT2 have an independent prognostic value of survival outcome and might be novel markers in basal-like breast cancer.


Asunto(s)
Neoplasias de la Mama , Células TH1 , Células Th2 , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Pronóstico , Células TH1/metabolismo , Células Th2/metabolismo , Esterol O-Aciltransferasa 2
4.
J Lipid Res ; 63(7): 100232, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598637

RESUMEN

Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.


Asunto(s)
Deficiencia de la Lecitina Colesterol Aciltransferasa , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/metabolismo , Apolipoproteínas B , Colesterol/metabolismo , Ésteres del Colesterol , Humanos , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa 2
5.
J Intern Med ; 292(2): 296-307, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34982494

RESUMEN

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Asunto(s)
Hígado Graso , Insulinas , Esterol O-Aciltransferasa , Animales , Ésteres del Colesterol/metabolismo , Hígado Graso/metabolismo , Glucosa/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Triglicéridos , Esterol O-Aciltransferasa 2
6.
Structure ; 29(12): 1410-1418.e4, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34520735

RESUMEN

Endoplasmic reticulum-localized acyl-CoA:cholesterol acyltransferases (ACAT), including ACAT1 and ACAT2, convert cholesterol to cholesteryl esters that become incorporated into lipoproteins or stored in cytosolic lipid droplets. Selective inhibition of ACAT2 has been shown to considerably attenuate hypercholesterolemia and atherosclerosis in mice. Here, we report cryogenic electron microscopy structures of human ACAT2 bound to its specific inhibitor pyripyropene A or the general ACAT inhibitor nevanimibe. Structural analysis reveals that ACAT2 has a topology in membranes similar to that of ACAT1. A catalytic core with an entry site occupied by a cholesterol molecule and another site for allosteric activation of ACAT2 is observed in these structures. Enzymatic assays show that mutations within sites of cholesterol entry or allosteric activation attenuate ACAT2 activity in vitro. Together, these results reveal mechanisms for ACAT2-mediated esterification of cholesterol, providing a blueprint to design new ACAT2 inhibitors for use in the prevention of cardiovascular disease.


Asunto(s)
Colesterol/metabolismo , Estructura Molecular , Esterol O-Aciltransferasa/metabolismo , Esterificación , Humanos , Esterol O-Aciltransferasa 2
7.
Commun Biol ; 4(1): 564, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980978

RESUMEN

The risks of non-alcoholic fatty liver disease (NAFLD) include obese and non-obese stresses such as chronic hepatitis C virus (HCV) infection, but the regulatory determinants remain obscure. Apolipoprotein J (ApoJ) served as an ER-Golgi contact-site chaperone near lipid droplet (LD), facilitating HCV virion production. We hypothesized an interplay between hepatic ApoJ, cholesterol esterification and lipid deposit in response to NAFLD inducers. Exposures of HCV or free-fatty acids exhibited excess LDs along with increased ApoJ expression, whereas ApoJ silencing alleviated hepatic lipid accumulation. Both stresses could concomitantly disperse Golgi, induce closer ApoJ and sterol O-acyltransferase 2 (SOAT2) contacts via the N-terminal intrinsically disordered regions, and increase cholesteryl-ester. Furthermore, serum ApoJ correlated positively with cholesterol and low-density lipoprotein levels in normal glycaemic HCV patients, NAFLD patients and in mice with steatosis. Taken together, hepatic ApoJ might activate SOAT2 to supply cholesteryl-ester for lipid loads, thus providing a therapeutic target of stress-induced steatosis.


Asunto(s)
Clusterina/metabolismo , Metabolismo de los Lípidos/fisiología , Esterol O-Aciltransferasa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Colesterol/metabolismo , Ésteres del Colesterol/metabolismo , Clusterina/fisiología , Esterificación , Hígado Graso/metabolismo , Femenino , Hepatitis C Crónica/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Gotas Lipídicas/metabolismo , Lípidos/fisiología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Esterol O-Aciltransferasa/fisiología , Esterol O-Aciltransferasa 2
8.
J Bioenerg Biomembr ; 53(4): 415-428, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34036483

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological carcinoma with high metastatic risk. Circular RNAs (circRNAs) have been identified as effective diagnostic and therapeutic biomarkers for ccRCC. This research aims to disclose the effect and regulatory mechanism of circRNA ribosomal protein L23a (circ_RPL23A) in ccRCC. We performed quantitative real-time polymerase chain reaction (qRT-PCR) to examine circ_RPL23A, microRNA-1233 (miR-1233) and acetyl-coenzyme A acetyltransferase 2 (ACAT2). Cell cycle progression, apoptosis, cell viability, invasion and migration, which were respectively conducted by using flow cytometry, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), transwell assays. The levels of ACAT2 protein and cell cycle proteins, proliferation-associated protein, and epithelial-mesenchymal transition (EMT) associated proteins were measured by western blot. Target relationship was analyzed via dual-luciferase reporter assay and RNA pull down assay. The animal model was used to study how circ_RPL23A affects in vivo. Circ_RPL23A was lower expressed in ccRCC tissues and cells. The elevated circ_RPL23A suppressed cell cycle progression, proliferation, migration and invasion but promoted apoptosis in ccRCC cells. MiR-1233 was a target of circ_RPL23A and direct targeted to ACAT2. Besides, circ_RPL23A exerted its anti-tumor effect by sponging miR-1233, and then relieved the inhibition effect of miR-1233 on ACAT2. Overexpression of circ_RPL23A also curbed ccRCC tumor growth in vivo. Circ_RPL23A inhibited ccRCC progression by upregulating ACAT2 expression by competitively binding miR-1233, which might provide an in-depth cognition for ccRCC pathogenesis and circ_RPL23A might be a promising biomarker in ccRCC diagnosis and treatment.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , MicroARNs/metabolismo , Esterol O-Aciltransferasa/metabolismo , Animales , Apoptosis/fisiología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Progresión de la Enfermedad , Xenoinjertos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Transfección , Esterol O-Aciltransferasa 2
9.
Aging (Albany NY) ; 12(24): 25744-25766, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33234731

RESUMEN

Phytosterols have been shown to improve blood lipid levels and treat atherosclerosis. This research investigated the effects of phytosterol Alisol B 23-acetate (AB23A) on jejunum lipid metabolism and atherosclerosis. The results show that intragastric administration of AB23A can significantly reduce atherosclerotic plaque area and lipid accumulation in the jejunum of ovariectomized ApoE-/- mice fed a high-fat diet and can also improve the lipid mass spectra of the plasma and jejunum. In vitro studies have shown that AB23A can increase cholesterol outflow in Caco-2 cells exposed to high fat concentrations and increase the expression of ATP-binding cassette transfer proteins G5/G8 (ABCG5/G8), the liver X receptor α (LXRα). Furthermore, inhibition of LXRα can significantly eliminate the active effect of AB23A on decreasing intracellular lipid accumulation. We also confirmed that AB23A has a negative effect on Acyl-CoA cholesterol acyltransferase 2 (ACAT2) in Caco-2 cells cultured in the high concentrations of fat, and we found that AB23A further reduces ACAT2 expression in cells treated with the ACAT2 inhibitor pyripyropene or transfected with ACAT2 siRNA. In conclusion, we confirmed that AB23A can reduce the absorption of dietary lipids in the jejunum by affecting the LXRα-ACAT2-ABCG5/G8 pathway and ultimately exert an anti-atherosclerotic effect.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/efectos de los fármacos , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/efectos de los fármacos , Aterosclerosis/metabolismo , Colestenonas/farmacología , Yeyuno/efectos de los fármacos , Lipoproteínas/efectos de los fármacos , Placa Aterosclerótica/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aterosclerosis/patología , Células CACO-2 , Colesterol/metabolismo , Ésteres del Colesterol/metabolismo , Dieta Alta en Grasa , Femenino , Glicerofosfolípidos/metabolismo , Humanos , Yeyuno/metabolismo , Yeyuno/patología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/metabolismo , Receptores X del Hígado/efectos de los fármacos , Receptores X del Hígado/metabolismo , Ratones , Ratones Noqueados para ApoE , Ovariectomía , Placa Aterosclerótica/patología , Esterol O-Aciltransferasa/efectos de los fármacos , Esterol O-Aciltransferasa/metabolismo , Triglicéridos/metabolismo , Esterol O-Aciltransferasa 2
10.
Steroids ; 164: 108725, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32890578

RESUMEN

Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-ß-cyclodextrin (2HPßCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPßCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPßCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , Colesterol/metabolismo , Proteína Niemann-Pick C1/genética , Esterol O-Aciltransferasa/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Animales , Hígado/enzimología , Ratones , Ratones Endogámicos BALB C , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa 2
11.
Mol Genet Genomic Med ; 8(8): e1267, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32478482

RESUMEN

Sarcopenia is a complex polygenic disease, and its molecular mechanism is still unclear. Whole lean body mass (WLBM) is a heritable trait predicting sarcopenia. To identify genomic loci underlying, we performed a whole-exome sequencing (WES) of WLBM variation with high sequencing depth (more than 40*) in 101 Chinese subjects. We then replicated in the major findings in the large-scale UK Biobank (UKB) cohort (N = 217,822) for WLBM. The results of four single-nucleotide polymorphisms (SNPs) were significant both in the discovery stage and replication stage: SNP rs740681 (discovery p = 1.66 × 10-6 , replication p = .05), rs2272303 (discovery p = 3.20 × 10-4 , replication p = 3.10 × 10-4 ), rs11170413 (discovery p = 3.99 × 10-4 , replication p = 2.90 × 10-4 ), and rs2272302 (discovery p = 9.13 × 10-4 , replication p = 3.10 × 10-4 ). We combined p values of the significant SNPs. Functional annotations highlighted two candidate genes, including FZR1 and SOAT2, that may exert pleiotropic effects to the development of body mass. Our findings provide useful insights that further enhance our understanding of genetic interplay in sarcopenia.


Asunto(s)
Proteínas Cdh1/genética , Polimorfismo de Nucleótido Simple , Sarcopenia/genética , Esterol O-Aciltransferasa/genética , Adulto , Índice de Masa Corporal , China , Exoma , Femenino , Pleiotropía Genética , Humanos , Masculino , Esterol O-Aciltransferasa 2
12.
Biol Pharm Bull ; 43(6): 951-958, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475917

RESUMEN

The fungal 13-membered cyclodepsipeptides, beauveriolides I and III, were previously reported to be atheroprotective activity in mouse models via inhibiting sterol O-acyltransferase (SOAT) activity. A total of 149 beauveriolide derivatives (BVDs) synthesized combinatorially were evaluated in in silico absorption, distribution, metabolism and excretion (ADME) analysis and inhibitory activity toward the two SOAT isozymes, SOAT1 and SOAT2. Hence, only 11 BVDs exhibited SOAT2-selective inhibition. Among these, we chose BVD327, which had the highest ADME score, for further evaluation. BVD327 administration (50 mg/kg/d, per os (p.o.)) significantly decreased atherosclerotic lesions in the aorta and heart (25.4 ± 6.9 and 20.6 ± 2.9%, respectively) in apolipoprotein E knockout (Apoe-/-) mice fed a cholesterol-enriched diet (0.2% cholesterol and 21% fat) for 12 weeks. These findings indicate that beauveriolide derivatives can be used as anti-atherosclerotic agents.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Esterol O-Aciltransferasa/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteínas Sanguíneas/metabolismo , Barrera Hematoencefálica/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Canal de Potasio ERG1/genética , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/patología , Humanos , Absorción Intestinal , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados para ApoE , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa 2
13.
Artículo en Inglés | MEDLINE | ID: mdl-32058035

RESUMEN

In contrast to human hepatocytes in vivo, which solely express acyl-coenzyme A:cholesterol acyltransferase (ACAT) 2, both ACAT1 and ACAT2 (encoded by SOAT1 and SOAT2) are expressed in primary human hepatocytes and in human hepatoma cell lines. Here, we aimed to create hepatocyte-like cells expressing the ACAT2, but not the ACAT1, protein to generate a model that - at least in this regard - resembles the human condition in vivo and to assess the effects on lipid metabolism. Using the Clustered Regularly Interspaced Short Palindromic Repeats technology, we knocked out SOAT1 in HepG2 and Huh7.5 cells. The wild type and SOAT2-only-cells were cultured with fetal bovine or human serum and the effects on lipoprotein and lipid metabolism were studied. In SOAT2-only-HepG2 cells, increased levels of cholesterol, triglycerides, apolipoprotein B and lipoprotein(a) in the cell media were detected; this was likely dependent of the increased expression of key genes involved in lipid metabolism (e.g. MTP, APOB, HMGCR, LDLR, ACACA, and DGAT2). Opposite effects were observed in SOAT2-only-Huh7.5 cells. Our study shows that the expression of SOAT1 in hepatocyte-like cells contributes to the distorted phenotype observed in HepG2 and Huh7.5 cells. As not only parameters of lipoprotein and lipid metabolism but also some markers of differentiation/maturation increase in the SOAT2-only-HepG2 cells cultured with HS, this cellular model represent an improved model for studies of lipid metabolism.


Asunto(s)
Hepatocitos/enzimología , Metabolismo de los Lípidos/fisiología , Lipoproteínas/metabolismo , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Esterol O-Aciltransferasa 2
14.
Dig Dis Sci ; 65(1): 158-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31312996

RESUMEN

BACKGROUND: Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS: Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-ß-cyclodextrin (2HPßCD). RESULTS: By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPßCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS: The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPßCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.


Asunto(s)
Colesterol/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Enfermedad de Niemann-Pick Tipo C/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Animales , Modelos Animales de Enfermedad , Ezetimiba/farmacología , Femenino , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa 2
15.
Int J Mol Sci ; 21(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877743

RESUMEN

The present study investigated and compared the effects of different molecular weights of chitosan (high molecular weight chitosan (HC) and low molecular weight chitosan (LC)) and its derivatives (chitosan oligosaccharide (CO)) on cholesterol regulation in high-fat (HF) diet-fed rats. A diet supplementation of 5% HC, 5% LC, or 5% CO for 8 weeks showed hypocholesterolemic potential in HF diet-fed rats. Unexpectedly, a 5% CO-supplemented diet exerted hepatic damage, producing increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-α). The supplementation of HC and LC, unlike CO, significantly decreased the hepatic total cholesterol (TC) levels and increased the fecal TC levels in HF diet-fed rats. The hepatic protein expression of the peroxisome proliferator-activated receptor-α (PPARα) in the HF diet-fed rats was markedly decreased, which could be significantly reversed by both HC and LC, but not CO, supplementation. Unlike the supplementation of CO, both HC and LC supplementation could effectively reverse the HF-inhibited/induced gene expressions of the low-density lipoprotein receptor (LDLR) and cholesterol 7α-hydroxylase (CYP7A1), respectively. The upregulated intestinal acyl-CoA cholesterol acyltransferase 2 (ACAT2) protein expression in HF diet-fed rats could be reversed by HC and LC, but not CO, supplementation. Taken together, a supplementation of 5% CO in HF diet-fed rats may exert liver damage via a higher hepatic cholesterol accumulation and a higher intestinal cholesterol uptake. Both HC and LC effectively ameliorated the hypercholesterolemia and regulated cholesterol homeostasis via the activation and inhibition of hepatic (AMPKα and PPARα) and intestinal (ACAT2) cholesterol-modulators, respectively, as well as the modulation of downstream signals (LDLR and CYP7A1).


Asunto(s)
Quitosano/farmacología , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hígado/efectos de los fármacos , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Quitosano/análogos & derivados , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipercolesterolemia/etiología , Hígado/metabolismo , Masculino , PPAR alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Esterol O-Aciltransferasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Esterol O-Aciltransferasa 2
16.
Physiol Res ; 68(6): 1021-1026, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31647302

RESUMEN

High levels of fructose induce hypertriglyceridemia, characterized by excessive levels of triglyceride-rich lipoproteins such as very low-density lipoprotein (VLDL); however, the underlying mechanisms are poorly understood. The aim of this short communication was to examine hepatic changes in the expression of genes related to cholesterol metabolism in rats with hypertriglyceridemia induced by high-fructose or high-glucose diets. Rats were fed a 65 % (w/w) glucose diet or a 65 % (w/w) fructose diet for 12 days. Serum levels of triglycerides, total cholesterol, and VLDL+LDL-cholesterol, hepatic levels of triglycerides and cholesterol, and ACAT2 expression at the gene and protein levels were significantly higher in the fructose diet group compared to the glucose diet group. The hepatic levels of Abcg5/8 were lower in the fructose group than in the glucose group. Serum high-density lipoprotein (HDL)-cholesterol and hepatic expression levels of Hmgcr, Ldlr, Acat1, Mttp, Apob, and Cyp7a1 did not differ significantly between groups. These findings suggest that high-fructose diet-induced hypertriglyceridemia is associated with increased hepatic ACAT2 expression.


Asunto(s)
Fructosa/efectos adversos , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/metabolismo , Hígado/metabolismo , Esterol O-Aciltransferasa/biosíntesis , Animales , Fructosa/administración & dosificación , Expresión Génica , Hipertrigliceridemia/genética , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa 2
17.
J Med Food ; 22(11): 1110-1117, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31613687

RESUMEN

This study was carried out to investigate the effects of policosanol on high-fat and high-cholesterol diet-induced hypercholesterolemic rats to provide strong evidence in support of its hypocholesterolemic effect. The hypercholesterolemic rats showed elevations in liver weight, total triglycerides, total cholesterol, and low-density lipoprotein (LDL) cholesterol in serum; however, policosanol supplementation reduced these markers significantly. In addition, we found that policosanol supplementation stimulated an increase in fecal cholesterol and bile acid contents and deactivated 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase by AMP-activated protein kinase (AMPK) phosphorylation during high-fat and high-cholesterol-containing diet-induced development of hypercholesterolemia. Policosanol supplementation decreased ApoB levels and increased LDL-receptor expression, but it did not affect the hepatic ACAT2 level in livers from hypercholesterolemic rats. Moreover, supplementation with policosanol significantly decreased aortic wall thickness and levels of P-selectin and soluble vascular cell adhesion molecule (sVCAM-1) in serum. In conclusion, we suggest that policosanol supplementation induces antihypercholesterolemia by inhibiting cholesterol biosynthesis, LDL cholesterol uptake, and cholesterol excretion.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Anticolesterolemiantes/farmacología , Colesterol/biosíntesis , Alcoholes Grasos/farmacología , Hipercolesterolemia/tratamiento farmacológico , Animales , Aorta , Apolipoproteína B-100/metabolismo , HDL-Colesterol/sangre , Dieta Alta en Grasa , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hipercolesterolemia/enzimología , Hígado/metabolismo , Masculino , Selectina-P/sangre , Ratas , Ratas Sprague-Dawley , Receptores de LDL/metabolismo , Esterol O-Aciltransferasa/metabolismo , Triglicéridos/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , Esterol O-Aciltransferasa 2
18.
Life Sci ; 232: 116592, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228515

RESUMEN

Acetoacetyl-CoA thiolase also known as acetyl-CoA acetyltransferase (ACAT) corresponds to two enzymes, one cytosolic (ACAT2) and one mitochondrial (ACAT1), which is thought to catalyse reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA during ketogenesis and ketolysis respectively. In addition to this activity, ACAT1 is also involved in isoleucine degradation pathway. Deficiency of ACAT1 is an inherited metabolic disorder, which results from a defect in mitochondrial acetoacetyl-CoA thiolase activity and is clinically characterized with patients presenting ketoacidosis. In this review I discuss the recent findings, which unexpectedly expand the known functions of ACAT1, indicating a role for ACAT1 well beyond its classical activity. Indeed ACAT1 has recently been shown to possess an acetyltransferase activity capable of specifically acetylating Pyruvate DeHydrogenase (PDH), an enzyme involved in producing acetyl-CoA. ACAT1-dependent acetylation of PDH was shown to negatively regulate this enzyme with a consequence in Warburg effect and tumor growth. Finally, the elevated ACAT1 enzyme activity in diverse human cancer cell lines was recently reported. These important novel findings on ACAT1's function and expression in cancer cell proliferation point to ACAT1 as a potential new anti-cancer target.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Neoplasias/enzimología , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Citosol/enzimología , Humanos , Mitocondrias/enzimología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Procesamiento Proteico-Postraduccional , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa 2
19.
Dig Liver Dis ; 51(7): 1016-1022, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630736

RESUMEN

Depletion of the cholesterol esterifying enzyme acyl-Coenzyme A: cholesterol acyltransferase 2 (ACAT2, encoded by Soat2) protects mice from atherosclerosis, diet-induced hypercholesterolemia, and hepatic steatosis when fed high-cholesterol diet. The glucose transporter 2 (GLUT2) represents the main gate of glucose uptake by the liver. Lipid synthesis from glucose (de novo lipogenesis; DNL) plays a pivotal role in the development of hepatic steatosis. Inhibition of DNL is a successful approach to reverse hepatic steatosis, as shown by different studies in mice and humans. Here we aimed to investigate whether depletion of Soat2 per se can reduce hepatic steatosis, also in the presence of very low levels of cholesterol in the diet, and the underlying mechanisms. Female Soat2-/- and wild type mice were either fed high-fat or high-carbohydrate diet and both contained <0.05% (w/w) cholesterol. Analysis in serum, liver, muscles and adipose tissues were performed. We found Soat2-/- mice fed high-fat, low-cholesterol diet to have less hepatic steatosis, decreased expression of genes involved in DNL and lower hepatic GLUT2. Similar findings were found in Soat2-/- mice fed high-carbohydrate, low-cholesterol diet. CONCLUSION: Depletion of Soat2 reduces hepatic steatosis independently of the presence of high levels of cholesterol in the diet. Our study provides a link between hepatic cholesterol esterification, DNL, and GLUT2.


Asunto(s)
Transportador de Glucosa de Tipo 2/genética , Hiperlipidemias/genética , Lipogénesis/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Esterol O-Aciltransferasa/genética , Animales , Colesterol/metabolismo , Dieta Alta en Grasa , Femenino , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esterol O-Aciltransferasa 2
20.
Biosci Rep ; 39(2)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696703

RESUMEN

BACKGROUND: Acyl-CoA: cholesterol acyltransferases (ACAT) is the only enzyme that catalyzes the synthesis of cholesterol esters (CE) from free cholesterol and long-chain fatty acyl-CoA and plays a critical role in cellular cholesterol homeostasis. In the present study, our primary objective was to explore whether the single-nucleotide polymorphisms (SNPs) in ACAT-2 gene were associated with coronary artery disease (CAD) in Uygur subjects, in Xinjiang, China. METHODS: We designed a case-control study including 516 CAD patients and 318 age- and sex-matched control subjects. Using the improved multiplex ligation detection reaction (iMLDR) method, we genotyped two SNPs (rs28765985 and rs7308390) of ACAT-2 gene in all subjects. RESULTS: We found that the genotypes, the dominant model (CC + CT vs TT) and over-dominant model (CT vs CC + TT) of rs28765985 were significantly different between CAD patients and the controls (P=0.027, P=0.012 and P=0.035, respectively). The rs28765985 C allele was associated with a significantly elevated CAD risk [CC/CT vs TT: odds ratio (OR) = 1.48, 95% confidence interval (CI) = 1.02-2.16, P=0.04] after adjustment for confounders. The TC and LDL-C levels were significantly higher in rs28765985 CC/CT genotypes than that in TT genotypes (P<0.05). CONCLUSIONS: Rs28765985 of ACAT-2 gene are associated with CAD in Uygur subjects. Subjects with CC/CT genotype or C allele of rs28765985 were associated with an increased risk of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Esterol O-Aciltransferasa/genética , Anciano , Estudios de Casos y Controles , China/etnología , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/sangre , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Esterol O-Aciltransferasa 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA