Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.383
Filtrar
1.
Microbiol Res ; 286: 127815, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944943

RESUMEN

Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.


Asunto(s)
Vías Biosintéticas , Ingeniería Metabólica , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ingeniería Metabólica/métodos , Terpenos/metabolismo , Vías Biosintéticas/genética , Esteroles/metabolismo , Esteroles/biosíntesis , Alcaloides/biosíntesis , Alcaloides/metabolismo , Alcoholes Grasos/metabolismo , Orgánulos/metabolismo , Redes y Vías Metabólicas/genética
2.
Plant Sci ; 346: 112168, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38914157

RESUMEN

Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Esteroles , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Esteroles/metabolismo , Esteroles/biosíntesis , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutación , Luz , Ácido Mevalónico/metabolismo
3.
Bioessays ; 46(7): e2400073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760877

RESUMEN

Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.


Asunto(s)
Colesterol , NADP , Estrés Oxidativo , Ubiquitina-Proteína Ligasas , NADP/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Humanos , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Oxidación-Reducción , Esteroles/metabolismo , Esteroles/biosíntesis
4.
Biomolecules ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38672427

RESUMEN

Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.


Asunto(s)
Esteroles , Animales , Humanos , Vías Biosintéticas/efectos de los fármacos , Colesterol/biosíntesis , Colesterol/metabolismo , Lanosterol/metabolismo , Esteroles/biosíntesis , Esteroles/metabolismo
5.
J Biol Chem ; 299(11): 105295, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774976

RESUMEN

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Asunto(s)
Biotinilación , Esteroles , Proteínas de Unión al GTP rab , Humanos , Colesterol/biosíntesis , Colesterol/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Esteroles/biosíntesis , Esteroles/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética
6.
Nature ; 618(7966): 767-773, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286610

RESUMEN

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Asunto(s)
Evolución Biológica , Eucariontes , Fósiles , Bacterias/química , Bacterias/metabolismo , Eucariontes/química , Eucariontes/clasificación , Eucariontes/metabolismo , Células Eucariotas/química , Células Eucariotas/clasificación , Células Eucariotas/metabolismo , Esteroles/análisis , Esteroles/biosíntesis , Esteroles/aislamiento & purificación , Esteroles/metabolismo , Sedimentos Geológicos/química , Vías Biosintéticas , Organismos Acuáticos/química , Organismos Acuáticos/clasificación , Organismos Acuáticos/metabolismo , Biota , Filogenia , Historia Antigua
7.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337046

RESUMEN

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Asunto(s)
Intestinos , Mucinas , Verrucomicrobia , Animales , Ratones , Mucinas/metabolismo , Esteroles/biosíntesis , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/metabolismo , Intestinos/microbiología , Organismos Libres de Patógenos Específicos , Elementos Transponibles de ADN/genética , Mutagénesis , Interacciones Microbiota-Huesped/genética , Espacio Intracelular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcripción Genética
8.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283201

RESUMEN

Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis , Saccharomyces cerevisiae/citología
9.
J Steroid Biochem Mol Biol ; 212: 105940, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119628

RESUMEN

Due to the biochemical importance of cholesterol homeostasis in cardiovascular disease (CVD), this study was aimed to identify metabolic signatures of serum sterols according to atherosclerotic CVD severity. Biogically active free cholesterol and its 11 analogues in serum samples obtained from subjects who underwent cardiovascular intervention were quantitatively evaluated by gas chromatography-mass spectrometry (GCMS). Study groups were divided by 29 patients with stable angina (SA), 35 patients with acute coronary syndrome (ACS), and 41 controls. In all subjects, serum levels of cholesterol and its upstream precursors of 7-dehydrocholesterol, lathosterol, and lanosterol were closely associated with CVD risk factors, such as total cholesterol, low-density lipoprotein cholesterol (LDL-C), and LDL-C/high-density lipoprotein cholesterol (HDL-C) ratio (r = 0.407 ∼ 0.684, P < 0.03 for all). Metabolic ratios of lathosterol/cholesterol (control = 55.75 ± 34.34, SA = 51.04 ± 34.93, ACS = 36.52 ± 22.00; P < 0.03) and lanosterol/cholesterol (control = 12.27 ± 7.43, SA = 10.97 ± 9.13, ACS = 8.01 ± 5.82; P < 0.03), were remarkably decreased. Both metabolic ratios and individual concentrations of lathosterol and lanosterol were also decreased in subjects with statin treatment than those in the control group without statin treatment (P < 0.05 for all), whereas three metabolic ratios of dietary sterols (sitosterol, campesterol, and stigmasterol) to free cholesterol were increased after statin therapy (P < 0.05 for all) in both SA and ACS groups. The present metabolic signatures suggest that both lathosterol/cholesterol and lanosterol/cholesterol ratios corresponding to cholesterol biosynthesis may reflect statin response. Individual dietary sterols to cholesterol ratios resulted in higher intestinal cholesterol absorption after statin therapy.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Esteroles/biosíntesis , Absorción Fisiológica , Adulto , Anciano , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/cirugía , Dislipidemias/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Dislipidemias/cirugía , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Esteroles/sangre
10.
Nat Prod Res ; 35(8): 1235-1241, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31359775

RESUMEN

Ambrein is found in ambergris, a coprolith occurring in the rectum of the sperm whale. In vitro, ambrein is produced by enzymatic cyclisation of squalene, via a monocyclic intermediate. However, little is known of the in vivo process. In order to find evidence for the reaction in vivo, a comparison was made of the δ13C relative isotopic ratios of ambrein in ambergris with those of co-occurring sterols. A statistically significant difference was noted. This suggests that ambrein originates via a different biosynthetic mechanism from that of the sterols. Examination of the minor constituents of a hydrogenolysed extract of ambergris revealed compounds with a bicyclic polypodane nucleus, rather than those with monocyclic structures. It is hypothesised that in vivo biosynthesis of ambrein proceeds, at least in some cases, via bacterial production of bicyclic polypodenols. The latter are known products of non-concerted squalene (or squalene oxide) cyclisations in other organisms.


Asunto(s)
Ámbar Gris/química , Ámbar Gris/metabolismo , Naftoles/metabolismo , Cachalote/metabolismo , Animales , Isótopos de Carbono/metabolismo , Colestanol/metabolismo , Ciclización , Cromatografía de Gases y Espectrometría de Masas , Escualeno/metabolismo , Esteroles/biosíntesis , Triterpenos/metabolismo
11.
Nat Neurosci ; 24(1): 47-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349711

RESUMEN

The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.


Asunto(s)
Enfermedades Desmielinizantes/patología , Microglía/fisiología , Esteroles/biosíntesis , Animales , Colesterol/metabolismo , Desmosterol/metabolismo , Encefalomielitis Autoinmune Experimental , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple , Oligodendroglía/metabolismo , Fagocitosis , Escualeno/metabolismo
12.
Nat Commun ; 11(1): 4755, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958772

RESUMEN

We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.


Asunto(s)
Homeostasis , Oxígeno/metabolismo , ARN Largo no Codificante/fisiología , Esteroles/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Núcleo Celular/metabolismo , Colesterol/metabolismo , Estrógenos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Células MCF-7 , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Nat Rev Microbiol ; 18(12): 717-730, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32908302

RESUMEN

Fungi have crucial roles in modern ecosystems as decomposers and pathogens, and they engage in various mutualistic associations with other organisms, especially plants. They have a lengthy geological history, and there is an emerging understanding of their impact on the evolution of Earth systems on a large scale. In this Review, we focus on the roles of fungi in the establishment and early evolution of land and freshwater ecosystems. Today, questions of evolution over deep time are informed by discoveries of new fossils and evolutionary analysis of new genomes. Inferences can be drawn from evolutionary analysis by comparing the genes and genomes of fungi with the biochemistry and development of their plant and algal hosts. We then contrast this emerging picture against evidence from the fossil record to develop a new, integrated perspective on the origin and early evolution of fungi.


Asunto(s)
Evolución Biológica , Fósiles/ultraestructura , Hongos/clasificación , Filogenia , Simbiosis/fisiología , Chlorophyta/microbiología , Planeta Tierra , Ecosistema , Fósiles/historia , Agua Dulce/microbiología , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Genómica , Historia Antigua , Fosforilación Oxidativa , Plantas/microbiología , Esteroles/biosíntesis
14.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788227

RESUMEN

Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.


Asunto(s)
Inmunidad de la Planta/fisiología , Percepción de Quorum/fisiología , Esteroles/biosíntesis , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Membrana Celular/fisiología , Clatrina/metabolismo , Flagelina/metabolismo , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Transducción de Señal , Esteroles/metabolismo , Xanthomonas campestris/metabolismo
15.
mSphere ; 5(4)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611698

RESUMEN

Lathosterol oxidase (LSO) catalyzes the formation of the C-5-C-6 double bond in the synthesis of various types of sterols in mammals, fungi, plants, and protozoa. In Leishmania parasites, mutations in LSO or other sterol biosynthetic genes are associated with amphotericin B resistance. To investigate the biological roles of sterol C-5-C-6 desaturation, we generated an LSO-null mutant line (lso- ) in Leishmania major, the causative agent for cutaneous leishmaniasis. lso- parasites lacked the ergostane-based sterols commonly found in wild-type L. major and instead accumulated equivalent sterol species without the C-5-C-6 double bond. These mutant parasites were replicative in culture and displayed heightened resistance to amphotericin B. However, they survived poorly after reaching the maximal density and were highly vulnerable to the membrane-disrupting detergent Triton X-100. In addition, lso- mutants showed defects in regulating intracellular pH and were hypersensitive to acidic conditions. They also had potential alterations in the carbohydrate composition of lipophosphoglycan, a membrane-bound virulence factor in Leishmania All these defects in lso- were corrected upon the restoration of LSO expression. Together, these findings suggest that the C-5-C-6 double bond is vital for the structure of the sterol core, and while the loss of LSO can lead to amphotericin B resistance, it also makes Leishmania parasites vulnerable to biologically relevant stress.IMPORTANCE Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5-C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5-C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , Leishmania major/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Estrés Fisiológico , Ácidos , Animales , Eliminación de Gen , Leishmania major/enzimología , Leishmania major/genética , Ratones , Ratones Endogámicos BALB C , Mutación , Esteroles/biosíntesis , Virulencia
16.
Mol Biol Evol ; 37(7): 1925-1941, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32125435

RESUMEN

Polycyclic triterpenes are members of the terpene family produced by the cyclization of squalene. The most representative polycyclic triterpenes are hopanoids and sterols, the former are mostly found in bacteria, whereas the latter are largely limited to eukaryotes, albeit with a growing number of bacterial exceptions. Given their important role and omnipresence in most eukaryotes, contrasting with their scant representation in bacteria, sterol biosynthesis was long thought to be a eukaryotic innovation. Thus, their presence in some bacteria was deemed to be the result of lateral gene transfer from eukaryotes. Elucidating the origin and evolution of the polycyclic triterpene synthetic pathways is important to understand the role of these compounds in eukaryogenesis and their geobiological value as biomarkers in fossil records. Here, we have revisited the phylogenies of the main enzymes involved in triterpene synthesis, performing gene neighborhood analysis and phylogenetic profiling. Squalene can be biosynthesized by two different pathways containing the HpnCDE or Sqs proteins. Our results suggest that the HpnCDE enzymes are derived from carotenoid biosynthesis ones and that they assembled in an ancestral squalene pathway in bacteria, while remaining metabolically versatile. Conversely, the Sqs enzyme is prone to be involved in lateral gene transfer, and its emergence is possibly related to the specialization of squalene biosynthesis. The biosynthesis of hopanoids seems to be ancestral in the Bacteria domain. Moreover, no triterpene cyclases are found in Archaea, invoking a potential scenario in which eukaryotic genes for sterol biosynthesis assembled from ancestral bacterial contributions in early eukaryotic lineages.


Asunto(s)
Carotenoides/metabolismo , Evolución Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Filogenia , Escualeno/metabolismo , Eucariontes/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Genes Bacterianos , Esteroles/biosíntesis
17.
Cell Signal ; 68: 109542, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31954176

RESUMEN

The target of rapamycin complex 1 (TORC1) protein kinase is activated by nutrients and controls nutrient uptake via the membrane trafficking of various nutrient permeases. However, its molecular mechanisms remain elusive. Cholesterol (ergosterol in yeast) in conjunction with sphingolipids forms tight-packing microdomains, "lipid rafts", which are critical for intracellular protein sorting. Here we show that a novel target of rapamycin (TOR)-interacting transcriptional activator Vhr2 is required for full expression of some ERG genes for ergosterol biogenesis and for proper sorting of the tryptophan permease Tat2 in budding yeast. Loss of Vhr2 caused sterol biogenesis disturbance and Tat2 missorting. TORC1 activity maintained VHR2 transcript and protein levels, and total sterol levels. Vhr2 was not involved in regulation of the TORC1-downstream protein kinase Npr1, which regulates Tat2 sorting. This study suggests that TORC1 regulates nutrient uptake via sterol biogenesis.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/enzimología , Transactivadores/metabolismo , Factores Generales de Transcripción/metabolismo , Triptófano/metabolismo , Regulación Fúngica de la Expresión Génica , Unión Proteica , Transporte de Proteínas , Proteolisis , Saccharomycetales/genética , Esteroles/biosíntesis , Ubiquitinación , Regulación hacia Arriba/genética , Vacuolas/metabolismo
18.
J Lipid Res ; 61(2): 192-204, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31548366

RESUMEN

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and Δ7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.-.


Asunto(s)
Biocatálisis , Caenorhabditis elegans/enzimología , Metilación , Metiltransferasas/metabolismo , Esteroles/biosíntesis , Esteroles/química , Animales , Caenorhabditis elegans/crecimiento & desarrollo
19.
J Biol Chem ; 294(40): 14757-14767, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31409644

RESUMEN

In fungi, ergosterol is an essential component of the plasma membrane. Its biosynthesis from acetyl-CoA is the primary target of the most commonly used antifungal drugs. Here, we show that the pantothenate kinase Cab1p, which catalyzes the first step in the metabolism of pantothenic acid for CoA biosynthesis in budding yeast (Saccharomyces cerevisiae), significantly regulates the levels of sterol intermediates and the activities of ergosterol biosynthesis-targeting antifungals. Using genetic and pharmacological analyses, we show that altered pantothenate utilization dramatically alters the susceptibility of yeast cells to ergosterol biosynthesis inhibitors. Genome-wide transcription and MS-based analyses revealed that this regulation is mediated by changes both in the expression of ergosterol biosynthesis genes and in the levels of sterol intermediates. Consistent with these findings, drug interaction experiments indicated that inhibition of pantothenic acid utilization synergizes with the activity of the ergosterol molecule-targeting antifungal amphotericin B and antagonizes that of the ergosterol pathway-targeting antifungal drug terbinafine. Our finding that CoA metabolism controls ergosterol biosynthesis and susceptibility to antifungals could set the stage for the development of new strategies to manage fungal infections and to modulate the potency of current drugs against drug-sensitive and -resistant fungal pathogens.


Asunto(s)
Farmacorresistencia Fúngica/genética , Ergosterol/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Esteroles/metabolismo , Anfotericina B/farmacología , Antifúngicos/farmacología , Coenzima A/biosíntesis , Coenzima A/efectos de los fármacos , Ergosterol/biosíntesis , Ergosterol/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico/efectos de los fármacos , Ácido Pantoténico/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis , Terbinafina/farmacología
20.
Plant Physiol Biochem ; 142: 452-459, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31421442

RESUMEN

Cold stress can significantly alter the composition and functioning of the major membrane lipids in plants. However, the roles of the sterol component of plant membranes in stress tolerance remain unclear. In the work presented here we investigated the role of sterols in the response of wheat to cold stress. Initial experiments demonstrated that the roots and leaves of wheat seedlings are differentially sensitive to low positive temperatures. In the roots, cold stress induced disturbance of membrane integrity and accumulation of ROS followed by the induction of autophagy. The absence of such changes in leaves suggests that in wheat, the roots are more sensitive to cold than the leaves. The roots display a time-dependent parabolic pattern of cold stress response, characterized by raised levels of sterols and markers of oxidative stress during short-term treatment, and a decline of these parameters after prolonged treatment. MßCD-induced sterol depletion aggravated the negative effects of cold on the roots. In the leaves the changes also displayed parabolic patterns, with significant changes occurring in 24-ethyl sterols and major PLs. Constitutively high levels of sterols, glycolipids and PLs, and up-regulation of TaSMTs in the leaves may provide membrane stability and cold tolerance. Taken together, results suggest that sterols play important roles in the response of wheat seedlings to cold stress.


Asunto(s)
Membrana Celular/metabolismo , Genes de Plantas/fisiología , Plantones/metabolismo , Esteroles/biosíntesis , Triticum/metabolismo , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Lípidos de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/genética , Plantones/fisiología , Triticum/genética , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA