Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.478
Filtrar
1.
Sci Rep ; 14(1): 11744, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778042

RESUMEN

Sensorimotor impairments, resulting from conditions like stroke and amputations, can profoundly impact an individual's functional abilities and overall quality of life. Assistive and rehabilitation devices such as prostheses, exo-skeletons, and serious gaming in virtual environments can help to restore some degree of function and alleviate pain after sensorimotor impairments. Myoelectric pattern recognition (MPR) has gained popularity in the past decades as it provides superior control over said devices, and therefore efforts to facilitate and improve performance in MPR can result in better rehabilitation outcomes. One possibility to enhance MPR is to employ transcranial direct current stimulation (tDCS) to facilitate motor learning. Twelve healthy able-bodied individuals participated in this crossover study to determine the effect of tDCS on MPR performance. Baseline training was followed by two sessions of either sham or anodal tDCS using the dominant and non-dominant arms. Assignments were randomized, and the MPR task consisted of 11 different hand/wrist movements, including rest or no movement. Surface electrodes were used to record EMG and the MPR open-source platform, BioPatRec, was used for decoding motor volition in real-time. The motion test was used to evaluate performance. We hypothesized that using anodal tDCS to increase the excitability of the primary motor cortex associated with non-dominant side in able-bodied individuals, will improve motor learning and thus MPR performance. Overall, we found that tDCS enhanced MPR performance, particularly in the non-dominant side. We were able to reject the null hypothesis and improvements in the motion test's completion rate during tDCS (28% change, p-value: 0.023) indicate its potential as an adjunctive tool to enhance MPR and motor learning. tDCS appears promising as a tool to enhance the learning phase of using assistive devices using MPR, such as myoelectric prostheses.


Asunto(s)
Electromiografía , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Electromiografía/métodos , Adulto Joven , Estudios Cruzados , Corteza Motora/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos
2.
J Clin Psychiatry ; 85(2)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38696220

RESUMEN

Objective: Major depressive disorder (MDD) is common, but current treatment options have significant limitations in terms of access and efficacy. This study examined the effectiveness of transcranial alternating current stimulation (tACS) for the acute treatment of MDD.Methods: We performed a triple-blind, fully remote, randomized controlled trial comparing tACS with sham treatment. Adults aged 21-65 years meeting DSM 5 criteria for MDD and having a score on the Beck Depression Inventory, Second Edition (BDI-II), between 20 and 63 were eligible to participate. Participants utilized tACS or sham treatment for two 20-minute treatment sessions daily for 4 weeks. The primary outcome was change in BDI-II score from baseline to the week 2 time point in an intent-to treat analysis, followed by analyses of treatment-adherent participants. Secondary analyses examined change at the week 1 and 4 time points, responder rates, subgroup analyses, other self-report mood measures, and safety. The study was conducted from April to October 2022.Results: A total of 255 participants were randomized to active or sham treatment. Improvement in intent-to-treat analysis was not statistically significant at week 2 (P= .056), but there were significant effects in participants with high adherence (P= .005). Significantly greater improvement at week 1 (P= .020) and greater response at week 4 (P= .028) occurred following tACS. Improvements were significantly larger for female participants. There were no significant effects on secondary mood measures. Side effects were minimal and mild.Conclusions: Rapid, clinically significant improvement in depression in adults with MDD was associated with tACS, particularly for women. Compared to other depression therapies, tACS has 3 key advantages: rapid, clinically significant treatment effect, the ability of patients to use the treatment on their own at home, and the rarity and low impact of adverse events.Trial Registration: ClinicalTrials.gov identifier: NCT05384041.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Humanos , Trastorno Depresivo Mayor/terapia , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Anciano , Adulto Joven , Escalas de Valoración Psiquiátrica
3.
Nutrients ; 16(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794759

RESUMEN

INTRODUCTION: Binge eating disorder (BED) is the most common eating disorder among those contributing to the development of obesity, and thus acts as a significant burden on the lives and health of patients. It is characterized by complex neurobiology, which includes changes in brain activity and neurotransmitter secretion. Existing treatments are moderately effective, and so the search for new therapies that are effective and safe is ongoing. AIM AND METHODS: This review examines the use of transcranial direct current stimulation (tDCS) in the treatment of binge eating disorder. Searches were conducted on the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS: Six studies were found that matched the review topic. All of them used the anodal stimulation of the right dorsolateral prefrontal cortex (DLPFC) in BED patients. tDCS proved effective in reducing food cravings, the desire to binge eat, the number of binging episodes, and food intake. It also improved the outcomes of inhibitory control and the treatment of eating disorder psychopathology. The potential mechanisms of action of tDCS in BED are explained, limitations in current research are outlined, and recommendations for future research are provided. CONCLUSIONS: Preliminary evidence suggests that the anodal application of tDCS to the right DLPFC reduces the symptoms of BED. However, caution should be exercised in the broader use of tDCS in this context due to the small number of studies performed and the small number of patients included. Future studies should incorporate neuroimaging and neurophysiological measurements to elucidate the potential mechanisms of action of tDCS in BED.


Asunto(s)
Trastorno por Atracón , Estimulación Transcraneal de Corriente Directa , Femenino , Humanos , Trastorno por Atracón/terapia , Trastorno por Atracón/psicología , Ansia/fisiología , Corteza Prefontal Dorsolateral , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Masculino
4.
Sci Rep ; 14(1): 11971, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796610

RESUMEN

Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.


Asunto(s)
Brazo , Movimiento , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Fenómenos Biomecánicos , Anciano , Brazo/fisiopatología , Movimiento/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Método Simple Ciego , Estudios Cruzados
5.
Neurocase ; 30(1): 8-17, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38700140

RESUMEN

Mary, who experienced non-fluent aphasia as a result of an ischemic stroke, received 10 years of personalized language training (LT), resulting in transient enhancements in speech and comprehension. To enhance these effects, multisite transcranial Direct Current Stimulation (tDCS) was added to her LT regimen for 15 sessions. Assessment using the Reliable Change Index showed that this combination improved her left inferior frontal connectivity and speech production for two months and significantly improved comprehension after one month. The results indicate that using multisite transcranial direct current stimulation (tDCS) can improve the effectiveness of language therapy (LT) for individuals with non-fluent aphasia.


Asunto(s)
Terapia del Lenguaje , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Terapia del Lenguaje/métodos , Neuroimagen Funcional , Afasia/etiología , Afasia/rehabilitación , Afasia/diagnóstico por imagen , Afasia/terapia , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/rehabilitación , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Anciano
6.
Neuroimage ; 294: 120649, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759354

RESUMEN

Neurobehavioral studies have provided evidence for the effectiveness of anodal tDCS on language production, by stimulation of the left Inferior Frontal Gyrus (IFG) or of left Temporo-Parietal Junction (TPJ). However, tDCS is currently not used in clinical practice outside of trials, because behavioral effects have been inconsistent and underlying neural effects unclear. Here, we propose to elucidate the neural correlates of verb and noun learning and to determine if they can be modulated with anodal high-definition (HD) tDCS stimulation. Thirty-six neurotypical participants were randomly allocated to anodal HD-tDCS over either the left IFG, the left TPJ, or sham stimulation. On day one, participants performed a naming task (pre-test). On day two, participants underwent a new-word learning task with rare nouns and verbs concurrently to HD-tDCS for 20 min. The third day consisted of a post-test of naming performance. EEG was recorded at rest and during naming on each day. Verb learning was significantly facilitated by left IFG stimulation. HD-tDCS over the left IFG enhanced functional connectivity between the left IFG and TPJ and this correlated with improved learning. HD-tDCS over the left TPJ enabled stronger local activation of the stimulated area (as indexed by greater alpha and beta-band power decrease) during naming, but this did not translate into better learning. Thus, tDCS can induce local activation or modulation of network interactions. Only the enhancement of network interactions, but not the increase in local activation, leads to robust improvement of word learning. This emphasizes the need to develop new neuromodulation methods influencing network interactions. Our study suggests that this may be achieved through behavioral activation of one area and concomitant activation of another area with HD-tDCS.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Masculino , Adulto , Adulto Joven , Electroencefalografía/métodos , Corteza Prefrontal/fisiología , Lóbulo Parietal/fisiología , Aprendizaje Verbal/fisiología , Lóbulo Temporal/fisiología , Aprendizaje/fisiología
7.
Neuroimage ; 294: 120647, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761552

RESUMEN

Mental representation is a key concept in cognitive science; nevertheless, its neural foundations remain elusive. We employed non-invasive electrical brain stimulation and functional magnetic resonance imaging to address this. During this process, participants perceived flickering red and green visual stimuli, discerning them either as distinct, non-fused colours or as a mentally generated, fused colour (orange). The application of transcranial alternating current stimulation to the medial prefrontal region (a key node of the default-mode network) suppressed haemodynamic activation in higher-order subthalamic and central executive networks associated with the perception of fused colours. This implies that higher-order thalamocortical and default-mode networks are crucial in humans' conscious perception of mental representation.


Asunto(s)
Estado de Conciencia , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Adulto , Estimulación Transcraneal de Corriente Directa/métodos , Estado de Conciencia/fisiología , Adulto Joven , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Percepción de Color/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Estimulación Luminosa/métodos
8.
JAMA Netw Open ; 7(5): e2412616, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776083

RESUMEN

Importance: Noninvasive brain stimulation (NIBS) interventions have been shown to be efficacious in several mental disorders, but the optimal dose stimulation parameters for each disorder are unknown. Objective: To define NIBS dose stimulation parameters associated with the greatest efficacy in symptom improvement across mental disorders. Data Sources: Studies were drawn from an updated (to April 30, 2023) previous systematic review based on a search of PubMed, OVID, and Web of Knowledge. Study Selection: Randomized clinical trials were selected that tested transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) for any mental disorder in adults aged 18 years or older. Data Extraction and Synthesis: Two authors independently extracted the data. A 1-stage dose-response meta-analysis using a random-effects model was performed. Sensitivity analyses were conducted to test robustness of the findings. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures: The main outcome was the near-maximal effective doses of total pulses received for TMS and total current dose in coulombs for tDCS. Results: A total of 110 studies with 4820 participants (2659 men [61.4%]; mean [SD] age, 42.3 [8.8] years) were included. The following significant dose-response associations emerged with bell-shaped curves: (1) in schizophrenia, high-frequency (HF) TMS on the left dorsolateral prefrontal cortex (LDLPFC) for negative symptoms (χ2 = 9.35; df = 2; P = .009) and TMS on the left temporoparietal junction for resistant hallucinations (χ2 = 36.52; df = 2; P < .001); (2) in depression, HF-DLPFC TMS (χ2 = 14.49; df = 2; P < .001); (3) in treatment-resistant depression, LDLPFC tDCS (χ2 = 14.56; df = 2; P < .001); and (4) in substance use disorder, LDLPFC tDCS (χ2 = 33.63; df = 2; P < .001). The following significant dose-response associations emerged with plateaued or ascending curves: (1) in depression, low-frequency (LF) TMS on the right DLPFC (RDLPFC) with ascending curve (χ2 = 25.67; df = 2; P = .001); (2) for treatment-resistant depression, LF TMS on the bilateral DLPFC with ascending curve (χ2 = 5.86; df = 2; P = .004); (3) in obsessive-compulsive disorder, LF-RDLPFC TMS with ascending curve (χ2 = 20.65; df = 2; P < .001) and LF TMS on the orbitofrontal cortex with a plateaued curve (χ2 = 15.19; df = 2; P < .001); and (4) in posttraumatic stress disorder, LF-RDLPFC TMS with ascending curve (χ2 = 54.15; df = 2; P < .001). Sensitivity analyses confirmed the main findings. Conclusions and Relevance: The study findings suggest that NIBS yields specific outcomes based on dose parameters across various mental disorders and brain regions. Clinicians should consider these dose parameters when prescribing NIBS. Additional research is needed to prospectively validate the findings in randomized, sham-controlled trials and explore how other parameters contribute to the observed dose-response association.


Asunto(s)
Trastornos Mentales , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Trastornos Mentales/terapia , Adulto , Masculino , Femenino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Harv Rev Psychiatry ; 32(3): 77-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728568

RESUMEN

LEARNING OBJECTIVES: After participating in this CME activity, the psychiatrist should be better able to:• Compare and contrast therapies used in combination with transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for treating MDD. BACKGROUND: Noninvasive neuromodulation, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has emerged as a major area for treating major depressive disorder (MDD). This review has two primary aims: (1) to review the current literature on combining TMS and tDCS with other therapies, such as psychotherapy and psychopharmacological interventions, and (2) to discuss the efficacy, feasibility, limitations, and future directions of these combined treatments for MDD. METHOD: This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched three databases: PubMed, PsycInfo, and Cochrane Library. The last search date was December 5, 2023. RESULTS: The initial search revealed 2,519 records. After screening and full-text review, 58 studies (7 TMS plus psychotherapy, 32 TMS plus medication, 7 tDCS plus psychotherapy, 12 tDCS plus medication) were included. CONCLUSIONS: The current literature on tDCS and TMS paired with psychotherapy provides initial support for integrating mindfulness interventions with both TMS and tDCS. Adding TMS or tDCS to stable doses of ongoing medications can decrease MDD symptoms; however, benzodiazepines may interfere with TMS and tDCS response, and antipsychotics can interfere with TMS response. Pairing citalopram with TMS and sertraline with tDCS can lead to greater MDD symptom reduction compared to using these medications alone. Future studies need to enroll larger samples, include randomized controlled study designs, create more uniform protocols for combined treatment delivery, and explore mechanisms and predictors of change.


Asunto(s)
Trastorno Depresivo Mayor , Psicoterapia , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Antidepresivos/uso terapéutico , Terapia Combinada , Trastorno Depresivo Mayor/terapia , Psicoterapia/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
10.
CNS Neurosci Ther ; 30(5): e14757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747078

RESUMEN

BACKGROUND: With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS: This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS: Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS: Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.


Asunto(s)
Trastornos de la Conciencia , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Estimulación del Nervio Vago , Humanos , Trastornos de la Conciencia/terapia , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/tendencias , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación del Nervio Vago/métodos , Estimulación del Nervio Vago/tendencias , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación Eléctrica Transcutánea del Nervio/tendencias
11.
Trials ; 25(1): 320, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750599

RESUMEN

BACKGROUND: Comorbid anxiety disorders and anxious distress are highly prevalent among individuals with major depressive disorder (MDD). The presence of the DSM-5 anxious distress specifier (ADS) has been associated with worse treatment outcomes and chronic disease course. Few studies have evaluated the therapeutic effects of High-definition transcranial direct current stimulation (HD-tDCS) on depressive and anxiety symptoms among MDD patients with ADS. The current randomized controlled trial aims to assess the efficacy of HD-tDCS as an augmentation therapy with antidepressants compared to sham-control in subjects of MDD with ADS. METHODS: MDD patients with ADS will be recruited and randomly assigned to the active HD-tDCS or sham HD-tDCS group. In both groups, patients will receive the active or sham intervention in addition to their pre-existing antidepressant therapy, for 2 weeks with 5 sessions per week, each lasting 30 min. The primary outcome measures will be the change of depressive symptoms, clinical response, and the remission rate as measured with the 17-item Hamilton Depression Rating Scale (HDRS-17) before and after the intervention and at the 2nd and 6th week after the completed intervention. Secondary outcome measures include anxiety symptoms, cognitive symptoms, disability assessment, and adverse effects. DISCUSSION: The HD-tDCS applied in this trial may have treatment effects on MDD with ADS and have minimal side effects. TRIAL REGISTRATION: The trial protocol is registered with www.chictr.org.cn under protocol registration number ChiCTR2300071726. Registered 23 May 2023.


Asunto(s)
Trastorno Depresivo Mayor , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Transcraneal de Corriente Directa , Humanos , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Mayor/diagnóstico , Estimulación Transcraneal de Corriente Directa/métodos , Método Doble Ciego , Resultado del Tratamiento , Adulto , Antidepresivos/uso terapéutico , Persona de Mediana Edad , Masculino , Femenino , Ansiedad/terapia , Ansiedad/psicología , Ansiedad/diagnóstico , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/psicología , Adulto Joven , Terapia Combinada , Adolescente
12.
PLoS One ; 19(5): e0301851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696453

RESUMEN

This study tested the usability of a home-based self-administration transcranial direct current stimulation (tDCS) device designed specifically for women's health needs. This is a single center triple blinded clinical usability study for a new wireless, Bluetooth-controlled wearable tDCS device for women's health. The study aims to evaluate the usability and effective blinding of a home-based tDCS system. A total of forty-nine women of reproductive age were randomly allocated (1:1) to receive one session of active tDCS (n = 24) or sham tDCS (n = 25) over the motor and dorsolateral prefrontal cortex. Each participant self-administered one 20-minute session without supervision following guidance on a software application alone. The System Usability Scale (SUS) and the Patient Global Impression of Change (PGIC) were used to evaluate the usability of the system. Regardless of sham or active conditions, all users found the system easy to use without the support of researchers. Usability scores were considered to be "excellent" in both groups and no significant difference was found between sham and active groups showing effective blinding of the device (Active group: 93.7 (83.1-97.5); Sham group 90 (86.2-95) p = 0.79) and PGIC (Active group: 2 (1-2.75); Sham group 2 (1-2) p = 0.99) using an unpaired t-test or non-parametric statistical tests accordingly. The new Bluetooth-controlled wearable tDCS device is easy, safe to use and completely controlled by a smartphone app. This device is focused on women's health and will be tested as an alternative treatment for chronic pelvic pain and mood disturbance associated with menstrual cycles in further research.


Asunto(s)
Dismenorrea , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Adulto , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Transcraneal de Corriente Directa/instrumentación , Dismenorrea/terapia , Adulto Joven , Autoadministración/instrumentación , Dispositivos Electrónicos Vestibles , Corteza Prefrontal/fisiología
13.
Sci Rep ; 14(1): 10087, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698192

RESUMEN

Detrimental decision-making is a major problem among violent offenders. Non-invasive brain stimulation offers a promising method to directly influence decision-making and has already been shown to modulate risk-taking in non-violent controls. We hypothesize that anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex beneficially modulates the neural and behavioral correlates of risk-taking in a sample of violent offenders. We expect offenders to show more risky decision-making than non-violent controls and that prefrontal tDCS will induce stronger changes in the offender group. In the current study, 22 male violent offenders and 24 male non-violent controls took part in a randomized double-blind sham-controlled cross-over study applying tDCS over the right dorsolateral prefrontal cortex. Subsequently, participants performed the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging (fMRI). Violent offenders showed significantly less optimal decision-making compared to non-violent controls. Active tDCS increased prefrontal activity and improved decision-making only in violent offenders but not in the control group. Also, in offenders only, prefrontal tDCS influenced functional connectivity between the stimulated area and other brain regions such as the thalamus. These results suggest baseline dependent effects of tDCS and pave the way for treatment options of disadvantageous decision-making behavior in this population.


Asunto(s)
Criminales , Toma de Decisiones , Imagen por Resonancia Magnética , Corteza Prefrontal , Asunción de Riesgos , Estimulación Transcraneal de Corriente Directa , Violencia , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Criminales/psicología , Toma de Decisiones/fisiología , Violencia/psicología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Método Doble Ciego , Adulto Joven , Estudios Cruzados , Corteza Prefontal Dorsolateral/fisiología
14.
Sci Rep ; 14(1): 11341, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762574

RESUMEN

The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.


Asunto(s)
Estudios de Factibilidad , Hipotálamo , Obesidad , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Hipotálamo/fisiología , Masculino , Adulto , Femenino , Obesidad/terapia , Obesidad/fisiopatología , Estudios Cruzados , Apetito/fisiología , Persona de Mediana Edad , Red Nerviosa/fisiología , Regulación del Apetito/fisiología , Tiempo de Reacción/fisiología
15.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771242

RESUMEN

A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Atención/fisiología , Transferencia de Experiencia en Psicología/fisiología , Mapeo Encefálico , Aprendizaje/fisiología , Adolescente
16.
Trials ; 25(1): 326, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755688

RESUMEN

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection (PASC) symptoms have broad impact, and may affect individuals regardless of COVID-19 severity, socioeconomic status, race, ethnicity, or age. A prominent PASC symptom is cognitive dysfunction, colloquially referred to as "brain fog" and characterized by declines in short-term memory, attention, and concentration. Cognitive dysfunction can severely impair quality of life by impairing daily functional skills and preventing timely return to work. METHODS: RECOVER-NEURO is a prospective, multi-center, multi-arm, phase 2, randomized, active-comparator design investigating 3 interventions: (1) BrainHQ is an interactive, online cognitive training program; (2) PASC-Cognitive Recovery is a cognitive rehabilitation program specifically designed to target frequently reported challenges among individuals with brain fog; (3) transcranial direct current stimulation (tDCS) is a noninvasive form of mild electrical brain stimulation. The interventions will be combined to establish 5 arms: (1) BrainHQ; (2) BrainHQ + PASC-Cognitive Recovery; (3) BrainHQ + tDCS-active; (4) BrainHQ + tDCS-sham; and (5) Active Comparator. The interventions will occur for 10 weeks. Assessments will be completed at baseline and at the end of intervention and will include cognitive testing and patient-reported surveys. All study activities can be delivered in Spanish and English. DISCUSSION: This study is designed to test whether cognitive dysfunction symptoms can be alleviated by the use of pragmatic and established interventions with different mechanisms of action and with prior evidence of improving cognitive function in patients with neurocognitive disorder. If successful, results will provide beneficial treatments for PASC-related cognitive dysfunction. TRIAL REGISTRATION: ClinicalTrials.gov NCT05965739. Registered on July 25, 2023.


Asunto(s)
COVID-19 , Ensayos Clínicos Fase II como Asunto , Disfunción Cognitiva , Estudios Multicéntricos como Asunto , SARS-CoV-2 , Humanos , COVID-19/complicaciones , Disfunción Cognitiva/terapia , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico , Estudios Prospectivos , Síndrome Post Agudo de COVID-19 , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Transcraneal de Corriente Directa , Cognición , Resultado del Tratamiento , Terapia Cognitivo-Conductual/métodos , Calidad de Vida
17.
PeerJ ; 12: e17288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699193

RESUMEN

Background: The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods: Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results: The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions: A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.


Asunto(s)
Atención , Estudios Cruzados , Tiempo de Reacción , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Atención/fisiología , Método Simple Ciego , Tiempo de Reacción/fisiología , Adulto Joven , Adulto , Corteza Motora/fisiología , Inhibición Psicológica
18.
Cereb Cortex ; 34(13): 8-18, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696602

RESUMEN

Noninvasive brain stimulation (NIBS) has been increasingly investigated during the last decade as a treatment option for persons with autism spectrum disorder (ASD). Yet, previous studies did not reach a consensus on a superior treatment protocol or stimulation target. Persons with ASD often suffer from social isolation and high rates of unemployment, arising from difficulties in social interaction. ASD involves multiple neural systems involved in perception, language, and cognition, and the underlying brain networks of these functional domains have been well documented. Aiming to provide an overview of NIBS effects when targeting these neural systems in late adolescent and adult ASD, we conducted a systematic search of the literature starting at 631 non-duplicate publications, leading to six studies corresponding with inclusion and exclusion criteria. We discuss these studies regarding their treatment rationale and the accordingly chosen methodological setup. The results of these studies vary, while methodological advances may allow to explain some of the variability. Based on these insights, we discuss strategies for future clinical trials to personalize the selection of brain stimulation targets taking into account intersubject variability of brain anatomy as well as function.


Asunto(s)
Encéfalo , Humanos , Adulto , Trastorno del Espectro Autista/terapia , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Estimulación Magnética Transcraneal/métodos , Trastorno Autístico/terapia , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Estimulación Transcraneal de Corriente Directa/métodos
19.
Yonsei Med J ; 65(6): 341-347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804028

RESUMEN

PURPOSE: Repeated transcranial direct current stimulation (tDCS) is expected to have the potential to improve cognitive function in patients with mild cognitive impairment (MCI). We aimed to evaluate the efficacy and safety of at-home tDCS for elderly patients with MCI. MATERIALS AND METHODS: Patients aged 60-80 years, who maintained normal daily living but reported objective memory impairments, were enrolled. Active or sham stimulations were applied to the dorsal frontal cortex (left: anode; right: cathode) at home for 2 weeks. Changes in cognitive function were assessed using visual recognition tasks and the Mini-Mental State Exam (MMSE), and safety and efficacy were assessed using self-reports and a remote monitoring application. RESULTS: Of the 19 participants enrolled, 12 participants were included in the efficacy analysis. Response times and MMSE scores significantly improved after active stimulation compared to the sham stimulation; however, there were no significant differences in the proportion of correct responses. The mean compliance of the efficacy group was 97.5%±4.1%. Three participants experienced burns, but no permanent sequelae remained. CONCLUSION: This preliminary result suggests that home-based tDCS may be a promising treatment option for MCI patients; however, it requires more attention and technological development to address safety concerns. CLINICAL TRIAL REGISTRATION: Clinical Research Information Service (CRIS), KCT0002721.


Asunto(s)
Cognición , Disfunción Cognitiva , Estimulación Transcraneal de Corriente Directa , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cognición/fisiología , Disfunción Cognitiva/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento
20.
J Neuroeng Rehabil ; 21(1): 93, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816860

RESUMEN

BACKGROUND: Transcranial alternating current stimulation (tACS) is a prominent non-invasive brain stimulation method for modulating neural oscillations and enhancing human cognitive function. This study aimed to investigate the effects of individualized theta tACS delivered in-phase and out-of-phase between the dorsal anterior cingulate cortex (dACC) and left dorsolateral prefrontal cortex (lDLPFC) during inhibitory control performance. METHODS: The participants engaged in a Stroop task with phase-lagged theta tACS over individually optimized high-density electrode montages targeting the dACC and lDLPFC. We analyzed task performance, event-related potentials, and prestimulus electroencephalographic theta and alpha power. RESULTS: We observed significantly reduced reaction times following out-of-phase tACS, accompanied by reduced frontocentral N1 and N2 amplitudes, enhanced parieto-occipital P1 amplitudes, and pronounced frontocentral late sustained potentials. Out-of-phase stimulation also resulted in significantly higher prestimulus frontocentral theta and alpha activity. CONCLUSIONS: These findings suggest that out-of-phase theta tACS potently modulates top-down inhibitory control, supporting the feasibility of phase-lagged tACS to enhance inhibitory control performance.


Asunto(s)
Inhibición Psicológica , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Adulto Joven , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Giro del Cíngulo/fisiología , Tiempo de Reacción/fisiología , Ritmo Teta/fisiología , Test de Stroop , Corteza Prefontal Dorsolateral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA