Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.356
Filtrar
2.
Front Immunol ; 15: 1410150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947331

RESUMEN

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Asunto(s)
Peces , Regulación de la Expresión Génica , Hierro , Estrés Fisiológico , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Peces/inmunología , Estrés Fisiológico/inmunología , Estrés Fisiológico/efectos de los fármacos , Nanopartículas del Metal , Arsénico/toxicidad
3.
Fish Shellfish Immunol ; 152: 109780, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033968

RESUMEN

The COMMD (Copper Metabolism gene MURR1 Domain) gene family consists of 10 members, which are involved in various biological processes such as copper and sodium transport, NF-κB activity and cell cycle progression. However, the study of COMMD gene family in large yellow croaker (Larimichthys crocea) is largely unknown. In this study, 10 COMMD gene family members (named LcCOMMDs) were successfully identified from large yellow croaker. The results showed that there were differences in the number of LcCOMMDs exons at the level of gene structure, which reflected that they had adjusted and changed accordingly in the process of evolution to adapt to the environment and achieved functional diversification. Through phylogenetic analysis, we found that the LcCOMMDs was highly conserved, indicating their important functions in organisms. It was worth noting that the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5 and LcCOMMD10 in the spleen changed significantly after bacterial stress, which suggested that these genes might be involved in the regulation of innate immune response. In addition, the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5, LcCOMMD7, LcCOMMD8, LcCOMMD9 and LcCOMMD10 changed significantly after hypoxia exposure, which further proved the role of LcCOMMDs in immune function. In summary, this study not only revealed the important role of COMMD genes in the innate immune response of large yellow croaker, but also provided valuable information for further understanding the regulatory mechanism of COMMD gene family under different conditions.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Perciformes , Filogenia , Infecciones por Pseudomonas , Pseudomonas , Animales , Perciformes/inmunología , Perciformes/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Pseudomonas/fisiología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/inmunología , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Estrés Fisiológico/inmunología , Secuencia de Aminoácidos , Hipoxia/inmunología , Hipoxia/veterinaria , Hipoxia/genética , Familia de Multigenes
4.
PLoS One ; 19(6): e0303334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848417

RESUMEN

Exercise offers numerous benefits to cancer patients and plays an essential role in postsurgical cancer rehabilitation. However, there is a lack of research examining the effects of exercise after the surgical stress of nephrectomy. To address this gap, we created an animal model that simulated patients who had undergone nephrectomy with or without an exercise intervention. Next, we performed a bioinformatic analysis based on the data generated by the RNA sequencing of the lung tissue sample. An overrepresentation analysis was conducted using two genome databases (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes [KEGG]). A KEGG analysis of the exercise-treated nephrectomy mice revealed enrichment in immune-related pathways, particularly in the NF-κB and B cell-related pathways. The expression of CD79A and IGHD, which are responsible for B cell differentiation and proliferation, was upregulated in the nephrectomy mice. Differential gene expression was categorized as significantly upregulated or downregulated according to nephrectomy and exercise groups. Notably, we identified several gene expression reversals in the nephrectomy groups with exercise that were not found in the nephrectomy without exercise or control groups. Our preliminary results potentially reveal a genetic landscape for the underlying mechanisms of the effects of exercise on our nephrectomy model.


Asunto(s)
Biología Computacional , Pulmón , Nefrectomía , Condicionamiento Físico Animal , Animales , Ratones , Biología Computacional/métodos , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Fisiológico/inmunología
5.
Scand J Immunol ; 100(2): e13394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924129

RESUMEN

Stress has been associated with less effective vaccine responses in adults. This review aims to investigate the evidence for a similar association in children. A systematic review search was conducted in January 2021 in three databases: Medline, Embase and PsycInfo. An updated search of the Medline database was systematically conducted until the most recent update on September 25th, 2023, to ensure the inclusion of the most current research available. Keywords related to stress, vaccines and children were used, and a total of 7263 (+1528) studies were screened by two independent investigators. Six studies met the inclusion criteria for data extraction and analysis. For quality assessment of the studies, the risk of bias in non-randomized studies-of interventions (ROBINS-I) tool was applied. Most of the studies suggest a negative role of stress on vaccine responses. However, the scarcity of studies, lack of confirmatory studies, risk of bias and heterogeneity according to age, type of vaccine, measures of stress and vaccine responses prevent a clear conclusion. Future studies should emphasize the use of as strict study designs as possible, including well-defined stress metrics and thorough examination of both pre- and post-vaccination responses. Systematic review registration: Prospero CRD42021230490.


Asunto(s)
Formación de Anticuerpos , Estrés Psicológico , Vacunación , Humanos , Niño , Lactante , Preescolar , Adolescente , Formación de Anticuerpos/inmunología , Estrés Psicológico/inmunología , Vacunas/inmunología , Recién Nacido , Estrés Fisiológico/inmunología
6.
Fish Shellfish Immunol ; 151: 109669, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849106

RESUMEN

The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Regulación de la Expresión Génica , Inmunidad Innata , Perciformes , Filogenia , Infecciones por Pseudomonas , Pseudomonas , Proteínas Supresoras de la Señalización de Citocinas , Animales , Perciformes/inmunología , Perciformes/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Proteínas Supresoras de la Señalización de Citocinas/química , Inmunidad Innata/genética , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/genética , Pseudomonas/fisiología , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Estrés Fisiológico/inmunología , Estrés Fisiológico/genética , Alineación de Secuencia/veterinaria , Hipoxia/genética , Hipoxia/inmunología , Hipoxia/veterinaria
7.
Fish Shellfish Immunol ; 152: 109733, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944251

RESUMEN

Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, ß-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1ß, il6, tnfα, il10 and tgfß1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Mucosa , Oncorhynchus mykiss , Estrés Fisiológico , Vibrio , Animales , Oncorhynchus mykiss/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Estrés Fisiológico/inmunología , Enfermedades de los Peces/inmunología , Vibrio/fisiología , Vibrio/inmunología , Aeromonas salmonicida/fisiología , Aeromonas salmonicida/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Aclimatación/inmunología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibriosis/prevención & control , Agua de Mar/química
8.
J Equine Vet Sci ; 137: 105078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697372

RESUMEN

During hospitalization horses may develop gastrointestinal conditions triggered by a stress-associated weak local immune system. The prospective, clinical trial was conducted to find out whether fecal immunoglobulin A (IgA) concentrations could be determined in hospitalized horses and how they changed during hospitalization and in response to various stressors. Samples were obtained from 110 horses and a control group (n = 14). At arrival in the hospital, horses were categorized into pain grades (1-5), and elective versus strenuous surgery (> 2 hours, traumatic and emergency procedures). Feces were collected on day 1, day 2, day 3, and day 7 in all horses. Blood samples were obtained at the same intervals, but additionally after general anaesthesia in horses undergoing surgery (day 2). IgA concentration in feces was determined by ELISA and measured in optical density at 450nm. The control group showed constant IgA concentrations on all days (mean value 0.30 OD450 ±SD 0.11, 1.26 mg/g; n = 11). After general anaesthesia fecal IgA concentrations decreased considerably independent of duration and type of surgery (P < 0.001 for elective and P = 0.043 for traumatic surgeries). High plasma cortisol concentrations were weakly correlated with low fecal IgA on the day after surgery (P = 0.012, day 3, correlation coefficient r = 0.113). Equine fecal IgA concentrations showed a decline associated with transport, surgery, and hospitalization in general, indicating that stress has an impact on the local intestinal immune function and may predispose horses for developing gastrointestinal diseases such as enterocolitis.


Asunto(s)
Heces , Inmunoglobulina A , Animales , Caballos , Inmunoglobulina A/metabolismo , Inmunoglobulina A/análisis , Inmunoglobulina A/sangre , Heces/química , Masculino , Femenino , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/metabolismo , Enfermedades de los Caballos/sangre , Hospitalización/estadística & datos numéricos , Estrés Fisiológico/inmunología
9.
Dev Comp Immunol ; 158: 105195, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762098

RESUMEN

This study investigated the impact of hyperthermal (34 °C) and hypothermal (14 °C) stress on the expression of the octopamine/tyramine receptor (LvOA/TA-R) and immune parameters in Litopenaeus vannamei, which is a species critical to the aquaculture industry. Given the sensitivity of aquatic organisms to climate change, understanding the physiological and immune responses of L. vannamei to temperature variations is essential for developing strategies to mitigate adverse effects. This research focuses on the immune response and expression changes of LvOA/TA-R under acute (0.5, 1, and 2 h) and chronic (24, 72, and 168 h) thermal stress conditions. Our findings reveal that thermal stress induces changes in LvOA/TA-R expression and impacts immune responses. Immune parameters such as total haemocyte count, differential haemocyte count, phenoloxidase activity, respiratory bursts, lysozyme activity, clearance efficiency, and phagocytosis exhibited a general trend of significant decline under the stress conditions. LvOA/TA-R had a higher expression in haemocyte under hyperthermal stress. The study elucidated that thermal stress modifies the expression of the LvOA/TA-R and diminishes immune functionality in L. vannamei, underscoring the potential influence of climate change on industry.


Asunto(s)
Hemocitos , Penaeidae , Fagocitosis , Receptores de Amina Biogénica , Animales , Receptores de Amina Biogénica/metabolismo , Receptores de Amina Biogénica/genética , Penaeidae/inmunología , Hemocitos/inmunología , Hemocitos/metabolismo , Respuesta al Choque Térmico/inmunología , Inmunidad Innata , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Estrés Fisiológico/inmunología , Acuicultura , Cambio Climático
10.
J Immunol ; 213(1): 40-51, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809096

RESUMEN

NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.


Asunto(s)
Apoptosis , Células Asesinas Naturales , Activación de Linfocitos , Humanos , Células Asesinas Naturales/inmunología , Apoptosis/inmunología , Activación de Linfocitos/inmunología , Daño del ADN , Replicación del ADN , Antígeno CD56/metabolismo , Estrés Fisiológico/inmunología , Linfocitos T/inmunología , Células Cultivadas
11.
Fish Shellfish Immunol ; 149: 109533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575039

RESUMEN

The Commd (Copper Metabolism gene MURR1 Domain) family genes play crucial roles in various biological processes, including copper and sodium transport regulation, NF-κB activity, and cell cycle progression. Their function in Haliotis discus hannai, however, remains unclear. This study focused on identifying and analyzing the Commd genes in H. discus hannai, including their gene structure, phylogenetic relationships, expression profiles, sequence diversity, and alternative splicing. The results revealed significant homology between H. discus hannai's Commd genes and those of other mollusks. Both transcriptome quantitative analysis and qRT-PCR demonstrated the responsiveness of these genes to heat stress and Vibrio parahaemolyticus infection. Notably, alternative splicing analysis revealed that COMMD2, COMMD4, COMMD5, and COMMD7 produce multiple alternative splice variants. Furthermore, sequence diversity analysis uncovered numerous missense mutations, specifically 9 in COMMD5 and 14 in COMMD10. These findings contribute to expanding knowledge on the function and evolution of the Commd gene family and underscore the potential role of COMMD in the innate immune response of H. discus hannai. This research, therefore, offers a novel perspective on the molecular mechanisms underpinning the involvement of Commd genes in innate immunity, paving the way for further explorations in this field.


Asunto(s)
Gastrópodos , Inmunidad Innata , Filogenia , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Inmunidad Innata/genética , Gastrópodos/inmunología , Gastrópodos/genética , Gastrópodos/microbiología , Estrés Fisiológico/inmunología , Estrés Fisiológico/genética , Familia de Multigenes , Perfilación de la Expresión Génica , Alineación de Secuencia , Secuencia de Aminoácidos , Regulación de la Expresión Génica/inmunología , Evolución Molecular
12.
Gen Comp Endocrinol ; 354: 114517, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615755

RESUMEN

Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.


Asunto(s)
Corticosterona , Estrés Fisiológico , Testosterona , Vocalización Animal , Animales , Masculino , Corticosterona/sangre , Testosterona/sangre , Vocalización Animal/fisiología , Estrés Fisiológico/fisiología , Estrés Fisiológico/inmunología , Bufonidae/sangre , Bufonidae/fisiología , Anuros/sangre , Anuros/fisiología , Anuros/inmunología
13.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492902

RESUMEN

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Asunto(s)
Pollos , Dexametasona , Macrófagos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pollos/inmunología , Pollos/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Dexametasona/farmacología , Apoptosis , Tolerancia Inmunológica , Regulación de la Expresión Génica , Terapia de Inmunosupresión , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Bazo/inmunología , Bazo/metabolismo , Transducción de Señal , Estrés Fisiológico/inmunología , Línea Celular , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Proliferación Celular
14.
Biochem Biophys Res Commun ; 691: 149326, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38035406

RESUMEN

Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-ß1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-ß1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-ß1 expression and contributing to reduction of LPS induced IgG2b production.


Asunto(s)
Factores de Transcripción ARNTL , Formación de Anticuerpos , Proteínas CLOCK , Inmunoglobulina G , Privación de Sueño , Privación de Sueño/genética , Privación de Sueño/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/inmunología , Proteínas CLOCK/genética , Proteínas CLOCK/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/genética , Estrés Fisiológico/inmunología , Animales , Ratones , Ratas , Células Cultivadas
15.
mBio ; 14(5): e0093423, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37732809

RESUMEN

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Asunto(s)
Virus del Dengue , Estrés Fisiológico , Replicación Viral , Virus Zika , eIF-2 Quinasa , Animales , Humanos , Células A549 , Chlorocebus aethiops , Dengue/inmunología , Dengue/virología , Virus del Dengue/fisiología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Eliminación de Gen , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/inmunología , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología , Células Vero , Replicación Viral/genética , Replicación Viral/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , ARN Bicatenario/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-34748971

RESUMEN

Nitrite stress is a major environmental factor that limits aquatic animal growth, reproduction and survival. Even so, some shrimps still can withstand somewhat high concentrations of nitrite environment. However, few studies have been conducted about the tolerance molecular mechanism of Litopenaeus vannamei in the high concentration nitrite. To identify the genes and pathways involved in the regulation of nitrite tolerance, we performed comparative transcriptomic analysis in the L. vannamei nitrite-tolerant (NT) and nitrite-sensitive (NS) families, and untreated shrimps were used as the control group. After 24 h of nitrite exposure (NaNO2, 112.5 mg/L), a total of 1521 and 868 differentially expressed genes (DEGs) were obtained from NT compared with NS and control group, respectively. Functional enrichment analysis revealed that most of these DEGs were involved in immune defense, energy metabolism processes and endoplasmic reticulum (ER) stress. During nitrite stress, energy metabolism in NT was significantly enhanced by activating the related genes expression of oxidative phosphorylation (OXPHOS) pathway and tricarboxylic acid (TCA) cycle. Meanwhile, some DEGs involved in innate immunity- related genes and pathways, and ER stress responses also were highly expressed in NT. Therefore, we speculate that accelerated energy metabolism, higher expression of immunity and ER related genes might be the important adaptive strategies for NT in relative to NS under nitrite stress. These results will provide new insights on the potential tolerant molecular mechanisms and the breeding of new varieties of nitrite tolerant L. vannamei.


Asunto(s)
Branquias/fisiología , Nitritos/toxicidad , Penaeidae/efectos de los fármacos , Penaeidae/genética , Estrés Fisiológico/genética , Animales , Ecotoxicología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Penaeidae/fisiología , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/inmunología , Contaminantes Químicos del Agua/toxicidad
17.
Artículo en Inglés | MEDLINE | ID: mdl-34873031

RESUMEN

BACKGROUND AND OBJECTIVES: We posit the involvement of the natural killer group 2D (NKG2D) pathway in multiple sclerosis (MS) pathology via the presence of specific NKG2D ligands (NKG2DLs). We aim to evaluate the expression of NKG2DLs in the CNS and CSF of patients with MS and to identify cellular stressors inducing the expression of UL16-binding protein 4 (ULBP4), the only detectable NKG2DL. Finally, we evaluate the impact of ULBP4 on functions such as cytokine production and motility by CD8+ T lymphocytes, a subset largely expressing NKG2D, the cognate receptor. METHODS: Human postmortem brain samples and CSF from patients with MS and controls were used to evaluate NKG2DL expression. In vitro assays using primary cultures of human astrocytes and neurons were performed to identify stressors inducing ULBP4 expression. Human CD8+ T lymphocytes from MS donors and age/sex-matched healthy controls were isolated to evaluate the functional impact of soluble ULBP4. RESULTS: We detected mRNA coding for the 8 identified human NKG2DLs in brain samples from patients with MS and controls, but only ULBP4 protein expression was detectable by Western blot. ULBP4 levels were greater in patients with MS, particularly in active and chronic active lesions and normal-appearing white matter, compared with normal-appearing gray matter from MS donors and white and gray matter from controls. Soluble ULBP4 was also detected in CSF of patients with MS and controls, but a smaller shed/soluble form of 25 kDa was significantly elevated in CSF from female patients with MS compared with controls and male patients with MS. Our data indicate that soluble ULBP4 affects various functions of CD8+ T lymphocytes. First, it enhanced the production of the proinflammatory cytokines GM-CSF and interferon-γ (IFNγ). Second, it increased CD8+ T lymphocyte motility and favored a kinapse-like behavior when cultured in the presence of human astrocytes. CD8+ T lymphocytes from patients with MS were especially altered by the presence of soluble ULBP4 compared with healthy controls. DISCUSSION: Our study provides new evidence for the involvement of NKG2D and its ligand ULBP4 in MS pathology. Our results point to ULBP4 as a viable target to specifically block 1 component of the NKG2D pathway without altering immune surveillance involving other NKG2DL.


Asunto(s)
Encéfalo/metabolismo , Linfocitos T CD8-positivos , Proteínas Portadoras/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de la Membrana/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Estrés Fisiológico/fisiología , Astrocitos , Autopsia , Encéfalo/patología , Proteínas Portadoras/líquido cefalorraquídeo , Células Cultivadas , Feto , Antígenos de Histocompatibilidad Clase I/líquido cefalorraquídeo , Humanos , Proteínas de la Membrana/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Neuronas , Estrés Fisiológico/inmunología , Regulación hacia Arriba , Sustancia Blanca/metabolismo
18.
Food Funct ; 12(23): 11790-11807, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34761788

RESUMEN

Exosomes are extracellular membranous nanovesicles that carry functional molecules to mediate cell-to-cell communication. To date, whether probiotics improve the immune function of broilers by plasmal exosome cargo is unclear. In this study, 300 broilers were allocated to three treatments: control diet (CON group), control diet + dexamethasone injection (DEX group), and control diet containing 1 × 108 cfu g-1 P8 + DEX injection (P8 + DEX group). The growth performance, meat quality and immune function of plasma and jejunal mucosa were detected. Exosomes were isolated from the plasma and characterized. Then, the exosome protein profile was determined by proteomic analysis. Correlation analyses between the exosomal proteins and growth performance, meat quality, immune function were performed. Lastly, the related protein levels were verified by multiple reaction monitoring (MRM). Results showed that P8 treatment increased the growth performance, meat quality and immune function of DEX-induced broilers with immunological stress. Moreover, the average diameters, cup-shaped morphology and expressed exosomal proteins confirmed that the isolated extracellular vesicles were exosomes. A total of 784 proteins were identified in the exosomes; among which, 126 differentially expressed proteins (DEPs) were found between the DEX and CON groups and 102 DEPs were found between the P8 + DEX and DEX groups. Gene ontology analysis indicated that DEPs between the DEX and CON groups are mainly involved in the metabolic process, cellular anatomical entity, cytoplasm, etc. DEPs between the P8 + DEX and DEX groups are mainly involved in the multicellular organismal process, response to stimulus, cytoplasm, etc. Pathway analysis revealed that most of the DEPs between the DEX and CON groups participated in the ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, etc. Most of the DEPs between the P8 + DEX and DEX groups participated in the ErbB and PPAR signaling pathways. Moreover, many DEPs were correlated with the altered parameters of growth performance, meat quality and immunity in P8-treated broilers. MRM further revealed that the upregulated FABP6 and EPCAM in the DEX group were decreased by P8 + DEX treatment, and the downregulated C1QTNF3 in the DEX group was increased by P8 + DEX treatment. In conclusion, our findings demonstrated that P8 may promote the immune function, growth performance and meat quality of broilers with immunological stress by regulating the plasma exosomal proteins, especially the proteins of FABP6, EPCAM and C1QTNF3 and the pathway of PPAR (ILK/FABP6).


Asunto(s)
Pollos , Exosomas , Lactobacillus plantarum , Carne , Probióticos , Alimentación Animal , Animales , Suplementos Dietéticos , Exosomas/química , Exosomas/efectos de los fármacos , Exosomas/inmunología , Masculino , Carne/análisis , Carne/normas , Probióticos/administración & dosificación , Probióticos/farmacología , Proteómica , Estrés Fisiológico/inmunología
19.
J Immunol Res ; 2021: 2939693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604391

RESUMEN

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Asunto(s)
Vesículas Extracelulares/inmunología , Macrófagos/inmunología , Estrés Fisiológico/inmunología , Trypanosoma cruzi/inmunología , Animales , Línea Celular , Células Cultivadas , Frío , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Concentración de Iones de Hidrógeno , Inmunidad/genética , Inmunidad/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nitrito de Sodio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiología
20.
Front Immunol ; 12: 706951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691020

RESUMEN

Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.


Asunto(s)
Ritmo Circadiano/inmunología , Glucocorticoides/inmunología , Sistema Inmunológico/inmunología , Animales , Humanos , Estrés Fisiológico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA