Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174.962
Filtrar
1.
Hereditas ; 161(1): 17, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755697

RESUMEN

BACKGROUND: This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed. RESULTS: The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels. CONCLUSION: Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.


Asunto(s)
Farmacología en Red , Humanos , Células Hep G2 , Dendrobium , Simulación del Acoplamiento Molecular , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Persona de Mediana Edad , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología
2.
Front Immunol ; 15: 1386780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756773

RESUMEN

Introduction: Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods: Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results: Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion: Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.


Asunto(s)
Hemorragia Cerebral , Quinasas Quinasa Quinasa PAM , Factor 2 Relacionado con NF-E2 , Neuronas , Estrés Oxidativo , Piroptosis , Ratas Sprague-Dawley , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Masculino , Ratas , Transducción de Señal/efectos de los fármacos , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Modelos Animales de Enfermedad , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Lactonas , Resorcinoles , Zearalenona/administración & dosificación
3.
Front Immunol ; 15: 1380846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756779

RESUMEN

Background: Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods: Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results: The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion: Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.


Asunto(s)
Antioxidantes , Pólipos Nasales , Estrés Oxidativo , Rinitis , Sinusitis , Humanos , Pólipos Nasales/metabolismo , Pólipos Nasales/inmunología , Sinusitis/metabolismo , Sinusitis/inmunología , Rinitis/metabolismo , Rinitis/inmunología , Enfermedad Crónica , Antioxidantes/metabolismo , Femenino , Masculino , Adulto , Persona de Mediana Edad , Oxidantes/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Citocinas/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/inmunología , Células Cultivadas , Rinosinusitis
4.
Front Endocrinol (Lausanne) ; 15: 1282231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756999

RESUMEN

Introduction: Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods: C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results: Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion: We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.


Asunto(s)
Ratones Endogámicos C57BL , Niacinamida , Nicotina , Compuestos de Piridinio , Animales , Compuestos de Piridinio/farmacología , Ratones , Niacinamida/análogos & derivados , Niacinamida/farmacología , Masculino , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado Graso/prevención & control , Hígado Graso/metabolismo , Hígado Graso/inducido químicamente , Jarabe de Maíz Alto en Fructosa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Estrés Oxidativo/efectos de los fármacos
5.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773797

RESUMEN

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Osteoporosis , Estrés Oxidativo , Animales , Autofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Ratas Sprague-Dawley , Estreptozocina , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Densidad Ósea/efectos de los fármacos
6.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774630

RESUMEN

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Melaninas , Estrés Oxidativo , Estrés Fisiológico , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimología , Virulencia , Animales , Criptococosis/microbiología , Ratones , Melaninas/metabolismo , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Fosforilación , Daño del ADN , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/genética , Sirolimus/farmacología , Ratones Endogámicos BALB C , Femenino , Esporas Fúngicas/crecimiento & desarrollo
7.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774755

RESUMEN

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Asunto(s)
Antraquinonas , Apoptosis , Neoplasias de la Mama , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Pleurotus , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Antraquinonas/farmacología , Células MCF-7 , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Femenino , Apoptosis/efectos de los fármacos , Apoptosis/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Pleurotus/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
8.
Gen Physiol Biophys ; 43(3): 263-271, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774925

RESUMEN

Lithium (Li) is a mood-stabilizing drug. Although one of the potential mechanisms underlying the neuroprotective effects of lithium is related to its antioxidative effect, its mechanisms of action are not fully understood. Herein we aimed to investigate the impact of varied dosages of long-term lithium therapy on oxidative stress parameters in the brains of healthy rats, and on anxiety-like behaviors, and whether any changes in behavior can be attributed to modifications in oxidative stress levels within the brain. Thirty-two adult Wistar albino male rats were randomly assigned to four treatment groups. While the control (C) group was fed with a standard diet, low Li (1.4 g/kg/diet), moderate Li (1.8 g/kg/diet), and high Li (2.2 g/kg/diet) groups were fed with lithium bicarbonate (Li2CO3) for 30 days. Malondialdehyde increased, while superoxide dismutase and catalase levels decreased in the brains of the high Li group animals. In addition, anxiety-like behaviors of animals increased in the high Li group considering fewer entries to and less time spent in the open arms of the elevated plus maze test. Our findings underscore the potential adverse effects of prolonged lithium treatment, especially at doses approaching the upper therapeutic range. The induction of toxicity, manifested through heightened oxidative stress, appears to be a key mechanism contributing to the observed increase in anxiety-like behaviors. Consequently, caution is warranted when considering extended lithium therapy at higher doses, emphasizing the need for further research to delineate the precise mechanisms underlying these effects and to inform safer therapeutic practices.


Asunto(s)
Ansiedad , Encéfalo , Relación Dosis-Respuesta a Droga , Estrés Oxidativo , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratas , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Litio/farmacología , Litio/administración & dosificación , Conducta Animal/efectos de los fármacos , Esquema de Medicación , Compuestos de Litio/farmacología , Compuestos de Litio/administración & dosificación
9.
Cochrane Database Syst Rev ; 5: CD013590, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775255

RESUMEN

BACKGROUND: Sickle cell disease (SCD) refers to a group of genetic disorders characterized by the presence of an abnormal haemoglobin molecule called haemoglobin S (HbS). When subjected to oxidative stress from low oxygen concentrations, HbS molecules form rigid polymers, giving the red cell the typical sickle shape. Antioxidants have been shown to reduce oxidative stress and improve outcomes in other diseases associated with oxidative stress. Therefore, it is important to review and synthesize the available evidence on the effect of antioxidants on the clinical outcomes of people with SCD. OBJECTIVES: To assess the effectiveness and safety of antioxidant supplementation for improving health outcomes in people with SCD. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 15 August 2023. SELECTION CRITERIA: We included randomized and quasi-randomized controlled trials comparing antioxidant supplementation to placebo, other antioxidants, or different doses of antioxidants, in people with SCD. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data, assessed the risk of bias and certainty of the evidence, and reported according to Cochrane methodological procedures. MAIN RESULTS: The review included 1609 participants in 26 studies, with 17 comparisons. We rated 13 studies as having a high risk of bias overall, and 13 studies as having an unclear risk of bias overall due to study limitations. We used GRADE to rate the certainty of evidence. Only eight studies reported on our important outcomes at six months. Vitamin C (1400 mg) plus vitamin E (800 mg) versus placebo Based on evidence from one study in 83 participants, vitamin C (1400 mg) plus vitamin E (800 mg) may not be better than placebo at reducing the frequency of crisis (risk ratio (RR) 1.18, 95% confidence interval (CI) 0.64 to 2.18), the severity of pain (RR 1.33, 95% CI 0.40 to 4.37), or adverse effects (AE), of which the most common were headache, nausea, fatigue, diarrhoea, and epigastric pain (RR 0.56, 95% CI 0.31 to 1.00). Vitamin C plus vitamin E may increase the risk of SCD-related complications (acute chest syndrome: RR 2.66, 95% CI 0.77 to 9.13; 1 study, 83 participants), and increase haemoglobin level (median (interquartile range) 90 (81 to 96) g/L versus 93.5 (84 to 105) g/L) (1 study, 83 participants) compared to placebo. However, the evidence for all the above effects is very uncertain. The study did not report on quality of life (QoL) of participants and their caregivers, nor on frequency of hospitalization. Zinc versus placebo Zinc may not be better than placebo at reducing the frequency of crisis at six months (rate ratio 0.62, 95% CI 0.17 to 2.29; 1 study, 36 participants; low-certainty evidence). We are uncertain whether zinc is better than placebo at improving sickle cell-related complications (complete healing of leg ulcers at six months: RR 2.00, 95% CI 0.60 to 6.72; 1 study, 34 participants; very low-certainty evidence). Zinc may be better than placebo at increasing haemoglobin level (g/dL) (MD 1.26, 95% CI 0.44 to 1.26; 1 study, 36 participants; low-certainty evidence). The study did not report on severity of pain, QoL, AE, and frequency of hospitalization. N-acetylcysteine versus placebo N-acetylcysteine (NAC) 1200 mg may not be better than placebo at reducing the frequency of crisis in SCD, reported as pain days (rate ratio 0.99 days, 95% CI 0.53 to 1.84; 1 study, 96 participants; low-certainty evidence). Low-certainty evidence from one study (96 participants) suggests NAC (1200 mg) may not be better than placebo at reducing the severity of pain (MD 0.17, 95% CI -0.53 to 0.87). Compared to placebo, NAC (1200 mg) may not be better at improving physical QoL (MD -1.80, 95% CI -5.01 to 1.41) and mental QoL (MD 2.00, 95% CI -1.45 to 5.45; very low-certainty evidence), reducing the risk of adverse effects (gastrointestinal complaints, pruritus, or rash) (RR 0.92, 95% CI 0.75 to 1.14; low-certainty evidence), reducing the frequency of hospitalizations (rate ratio 0.98, 95% CI 0.41 to 2.38; low-certainty evidence), and sickle cell-related complications (RR 5.00, 95% CI 0.25 to 101.48; very low-certainty evidence), or increasing haemoglobin level (MD -0.18 g/dL, 95% CI -0.40 to 0.04; low-certainty evidence). L-arginine versus placebo L-arginine may not be better than placebo at reducing the frequency of crisis (monthly pain) (RR 0.71, 95% CI 0.26 to 1.95; 1 study, 50 participants; low-certainty evidence). However, L-arginine may be better than placebo at reducing the severity of pain (MD -1.41, 95% CI -1.65 to -1.18; 2 studies, 125 participants; low-certainty evidence). One participant allocated to L-arginine developed hives during infusion of L-arginine, another experienced acute clinical deterioration, and a participant in the placebo group had clinically relevant increases in liver function enzymes. The evidence is very uncertain whether L-arginine is better at reducing the mean number of days in hospital compared to placebo (MD -0.85 days, 95% CI -1.87 to 0.17; 2 studies, 125 participants; very low-certainty evidence). Also, L-arginine may not be better than placebo at increasing haemoglobin level (MD 0.4 g/dL, 95% CI -0.50 to 1.3; 2 studies, 106 participants; low-certainty evidence). No study in this comparison reported on QoL and sickle cell-related complications. Omega-3 versus placebo Very low-certainty evidence shows no evidence of a difference in the risk of adverse effects of omega-3 compared to placebo (RR 1.05, 95% CI 0.74 to 1.48; 1 study, 67 participants). Very low-certainty evidence suggests that omega-3 may not be better than placebo at increasing haemoglobin level (MD 0.36 g/L, 95% CI -0.21 to 0.93; 1 study, 67 participants). The study did not report on frequency of crisis, severity of pain, QoL, frequency of hospitalization, and sickle cell-related complications. AUTHORS' CONCLUSIONS: There was inconsistent evidence on all outcomes to draw conclusions on the beneficial and harmful effects of antioxidants. However, L-arginine may be better than placebo at reducing the severity of pain at six months, and zinc may be better than placebo at increasing haemoglobin level. We are uncertain whether other antioxidants are beneficial for SCD. Larger studies conducted on each comparison would reduce the current uncertainties.


Asunto(s)
Anemia de Células Falciformes , Antioxidantes , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/sangre , Antioxidantes/uso terapéutico , Sesgo , Adulto , Niño , Calidad de Vida , Estrés Oxidativo/efectos de los fármacos , Adolescente , Ácido Ascórbico/uso terapéutico , Placebos/uso terapéutico
10.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775298

RESUMEN

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Asunto(s)
Abietanos , Trombosis , Emisiones de Vehículos , Animales , Abietanos/farmacología , Ratones , Masculino , Emisiones de Vehículos/toxicidad , Trombosis/prevención & control , Trombosis/tratamiento farmacológico , Trombosis/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/tratamiento farmacológico , Antioxidantes/farmacología , Material Particulado/toxicidad , Material Particulado/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Contaminantes Atmosféricos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos
11.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775505

RESUMEN

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Asunto(s)
Epilepsia , Leptina , Malondialdehído , Piperidinas , Pirazoles , Ratas Wistar , Receptor Cannabinoide CB1 , Superóxido Dismutasa , Animales , Leptina/farmacología , Masculino , Receptor Cannabinoide CB1/agonistas , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Malondialdehído/análisis , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/análisis , Piperidinas/farmacología , Pirazoles/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/análisis , Ácidos Araquidónicos/farmacología , Ratas , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Penicilinas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebro/efectos de los fármacos , Cerebro/metabolismo , Ensayo de Inmunoadsorción Enzimática , Agonistas de Receptores de Cannabinoides/farmacología
12.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775678

RESUMEN

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Asunto(s)
Cardiomiopatías , Diosgenina , Factor 88 de Diferenciación Mieloide , Sepsis , Transducción de Señal , Receptor Toll-Like 4 , Animales , Diosgenina/análogos & derivados , Diosgenina/farmacología , Diosgenina/uso terapéutico , Receptor Toll-Like 4/metabolismo , Ratas , Factor 88 de Diferenciación Mieloide/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/prevención & control , Línea Celular , Ratas Sprague-Dawley , Factor de Transcripción ReIA/metabolismo , Estrés Oxidativo/efectos de los fármacos , Lipopolisacáridos , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos
13.
FASEB J ; 38(10): e23677, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38775792

RESUMEN

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Asunto(s)
Artemisininas , Autofagia , Cardiotoxicidad , Doxorrubicina , Ferroptosis , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Artemisininas/farmacología , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Autofagia/efectos de los fármacos , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Ratones , Ferroptosis/efectos de los fármacos , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular , Ratas
14.
Sci Rep ; 14(1): 11560, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773299

RESUMEN

IBD is a disorder which could be caused by oxidative stress. This investigation aims to determine if probiotics and postbiotics can control oxidative stress and inflammation and compare the effectiveness of these two probiotic and postbiotic mixtures of substances. 88 strains of Lactobacillus and Bifidobacterium were tested for antioxidant activity. Male wild-type C57BL/6 mice were divided into four experimental groups, namely high fat diet (HFD) + PBS, HFD + DSS, HFD + DSS + 109 cfu/ml of probiotics, and HFD + DSS + 109 cfu/ml of postbiotics. The phenotypical indices and pathological scores were assessed. The expression of genes related to NF-kB and Nrf2 signaling pathways and enzymes associated with oxidant/anti-oxidant activities, and proinflammatory/inflammatory cytokines were assessed. In contrast to the groups exposed to DSS, mice treated with probiotics mixture and postbiotics mixture alongside DSS displayed alleviation of DSS-induced adverse effects on phenotypical characteristics, as well as molecular indices such as the Nrf2 and NF-kB related genes, with a greater emphasis on the postbiotics component. In accordance with the findings of the present investigation, it can be inferred that even in using a high-fat dietary regimen as an inducer of oxidative stress, the emergence of inflammation can be effectively addressed through the utilization of probiotics and, more specifically, postbiotics.


Asunto(s)
Antiinflamatorios , Antioxidantes , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , FN-kappa B , Estrés Oxidativo , Probióticos , Transducción de Señal , Animales , Probióticos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Masculino , Ratones , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Lactobacillus , Bifidobacterium , Dieta Alta en Grasa/efectos adversos
15.
BMC Public Health ; 24(1): 1366, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773415

RESUMEN

BACKGROUND: Oxidative stress is closely related to gut health. Exposures to oxidative stress in one's diet and lifestyle can be evaluated by the oxidative balance score (OBS). However, the relationship between OBS and intestinal habits is unknown. This study aimed to investigate the relationships between OBS and intestinal habits (chronic diarrhea and chronic constipation) and the underlying mechanisms involved. METHODS: Using data from the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, we included a total of 8065 participants. Twenty dietary and lifestyle factors were selected for the OBS calculates. Chronic constipation and chronic diarrhea were defined using the Bristol stool form scale (BSFS) types 1 and 2 and the BSFS 6 and 7, respectively. Multivariate logistic regression, subgroup analysis, and restricted cubic splines (RCS) analysis were used to evaluate the relationship between OBS and defecation habits. Finally, we used mediation analysis to explore the indirect effects of oxidative stress and inflammatory markers on these associations. RESULTS: After adjusting for all the covariates, multivariate logistic regression analysis revealed that OBS was negatively correlated with diarrhea (OR = 0.57; 95%CI = 0.39-0.83; P = 0.008)and positively correlated with constipation (OR = 1.75; 95%CI = 1.19-2.25; P = 0.008). The RCS showed a nonlinear relationship between OBS and diarrhea (P for nonlinearity = 0.02) and a linear relationship between OBS and constipation (P for nonlinearity = 0.19). Mediation analysis showed that the C-reactive protein (CRP) concentration and white blood cell (WBC) count mediated the correlation between OBS and diarrhea by 6.28% and 6.53%, respectively (P < 0.05). CONCLUSIONS: OBS is closely related to changes in patients' defecation habits. Oxidative stress and inflammation may play a role in the relationship between the two. This result emphasizes the importance of the public adjusting their lifestyle and dietary habits according to their own situation. However, further prospective studies are needed to analyze the relationship between oxidative stress and changes in defecation habits.


Asunto(s)
Estreñimiento , Diarrea , Encuestas Nutricionales , Estrés Oxidativo , Humanos , Estreñimiento/epidemiología , Estrés Oxidativo/fisiología , Femenino , Diarrea/epidemiología , Masculino , Persona de Mediana Edad , Adulto , Enfermedad Crónica , Estilo de Vida , Anciano , Estudios Transversales
16.
PLoS One ; 19(5): e0303189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768165

RESUMEN

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Infertilidad Masculina , Animales , Masculino , Ratas , Biomarcadores/metabolismo , Infertilidad Masculina/metabolismo , Infertilidad Masculina/etiología , Testículo/metabolismo , Testículo/patología , Riñón/metabolismo , Riñón/patología , Ratas Sprague-Dawley , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Hepatopatías/metabolismo , Hepatopatías/patología , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Insuficiencia Renal/etiología
17.
Food Res Int ; 187: 114428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763678

RESUMEN

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Nanopartículas , Polisacáridos , Rubus , Selenio , Humanos , Selenio/química , Células Hep G2 , Polisacáridos/farmacología , Polisacáridos/química , Metabolismo de los Lípidos/efectos de los fármacos , Glucosa/metabolismo , Nanopartículas/química , Rubus/química , Tamaño de la Partícula , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos
18.
Plant Cell Rep ; 43(6): 146, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764051

RESUMEN

KEY MESSAGE: Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.


Asunto(s)
Antioxidantes , Carthamus tinctorius , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Bicarbonato de Sodio , Cloruro de Sodio , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Bicarbonato de Sodio/farmacología , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Carthamus tinctorius/efectos de los fármacos , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Carthamus tinctorius/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo , Clorofila/metabolismo , Estrés Salino/efectos de los fármacos
19.
Clin Neurol Neurosurg ; 241: 108291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701547

RESUMEN

OBJECTIVE: Acute cerebral infarction (ACI) contributes to disability and death accross the globe. Remote ischemic preconditioning (RIPC) reduces cerebral infarct size and improves neurological function in ACI. We conducted this research to reveal the effects of RIPC intervention on serum levels of microRNA-582-5p (miR-582-5p)/high mobility group box-1 protein (HMGB1), inflammation, oxidative stress and neurological function in patients with ACI. METHODS: In this study, 158 patients with ACI were prospectively selected and randomized into the control (administered symptomatic medication alone) and the RIPC (underwent RIPC of the limbs based on medication) groups, with their clinical baseline data documented. Serum levels of miR-582-5p, and HMGB1 and inflammatory factors [tumor necrosis factor alpha (TNF-α)/interleukin-1beta (IL-1ß)/IL-10] were assessed by RT-qPCR/ELISA, followed by comparisons of oxidative stress indices [glutathione-peroxidase (GSH-Px)/catalase (CAT)/superoxide dismutase (SOD)] using a fully automatic biochemical analyzer. Correlations between serum miR-582-5p with serum HMGB1, and between their levels with TNF-α/IL-1ß/IL-10 were analyzed by Pearson analysis. The NIHSS score/Barthel Index scale were used to assess neurological function/daily living ability. Intervention safety for ACI patients was evaluated. RESULTS: RIPC intervention increased serum miR-582-5p levels and decreased serum HMGB1 levels in ACI patients. RIPC intervention significantly reduced inflammation (diminished TNF-α/IL-1ß levels, increased IL-10 level) and oxidative stress (elevated GSH-Px/CAT/SOD levels) in ACI patients. Serum miR-582-5p was negatively correlated with TNF-α and IL-1ß levels, while positively correlated with IL-10 level, while HMGB1 was positively correlated with TNF-α and IL-1ß levels, while negatively correlated with IL-10 level. miR-582-5p was negatively correlated with HMGB1. RIPC intervention improved neurological function (reduced NIHSS, increased Barthel scores) in ACI patients to some extent. RIPC had certain effectiveness and safety in the treatment of ACI. CONCLUSION: After RIPC intervention, serum miR-582-5p levels were increased, HMGB1 levels were decreased, and inflammation and oxidative stress were reduced in ACI patients, which mitigated neurological deficits, improved patients' ability to perform life activities, and exerted neuroprotective effects to some extent.


Asunto(s)
Infarto Cerebral , Proteína HMGB1 , Precondicionamiento Isquémico , MicroARNs , Estrés Oxidativo , Humanos , Masculino , Proteína HMGB1/sangre , Femenino , Precondicionamiento Isquémico/métodos , MicroARNs/sangre , Persona de Mediana Edad , Anciano , Infarto Cerebral/sangre , Infarto Cerebral/terapia , Estrés Oxidativo/fisiología
20.
Sci Rep ; 14(1): 10238, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702342

RESUMEN

Fatty acids are precursors of inflammatory oxylipins. In the context of COVID-19, an excessive production of pro-inflammatory cytokines is associated with disease severity. The objective was to investigate whether the baseline omega 3/omega 6 fatty acids ratio and the oxylipins were associated with inflammation and oxidative stress in unvaccinated patients with COVID-19, classified according to the severity of the disease during hospitalization. This Prospective population-based cohort study included 180 hospitalized patients with COVID-19. The patients were classified into five groups according to the severity of their disease. Group 1 was the least severe and Group 5 was the most severe. Three specific types of fatty acids-eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA)-as well as their enzymatic and non-enzymatic oxylipins were determined using chromatography coupled mass spectrometry. There was no difference in the ratio of omega-3 to omega-6 fatty acids between the groups (p = 0.276). However, the EPA/AA ratio was lower in Group 4 compared to Group 1 (p = 0.015). This finding was associated with an increase in both C-Reactive Protein (p < 0.001) and Interleukin-6 (p = 0.002). Furthermore, the concentration of F2-Isoprostanes was higher in Group 4 than in Group 1 (p = 0.009), while no significant changes were observed for other oxylipins among groups. Multivariate analysis did not present any standard of biomarkers, suggesting the high complexity of factors involved in the disease severity. Our hypothesis was confirmed in terms of EPA/AA ratio. A higher EPA/AA ratio upon hospital admission was found to be associated with lower concentration of C-Reactive Protein and Interleukin-6, leading to a better prognosis of hospitalized SARS-CoV-2 patients. Importantly, this beneficial outcome was achieved without any form of supplementation. The trial also provides important information that can be further applied to reduce the severity of infections associated with an uncontrolled synthesis of pro-inflammatory cytokines.Trial registration: https://clinicaltrials.gov/study/NCT04449718 -01/06/2020. ClinicalTrials.gov Identifier: NCT04449718.


Asunto(s)
COVID-19 , Ácidos Grasos Omega-3 , Hospitalización , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , Masculino , Femenino , Persona de Mediana Edad , Ácidos Grasos Omega-3/sangre , Anciano , Estudios Prospectivos , SARS-CoV-2/aislamiento & purificación , Oxilipinas/sangre , Ácido Eicosapentaenoico/sangre , Estrés Oxidativo , Ácidos Docosahexaenoicos/sangre , Adulto , Inflamación/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA