Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38959707

RESUMEN

Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.


Asunto(s)
Estreñimiento , Medicamentos Herbarios Chinos , Heces , Microbioma Gastrointestinal , Magnolia , Ratas Sprague-Dawley , Rheum , Ratas , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Magnolia/química , Microbioma Gastrointestinal/efectos de los fármacos , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Masculino , Rheum/química , Heces/microbiología , Heces/química , Cromatografía Líquida de Alta Presión , Metabolómica , Rizoma/química , Metaboloma/efectos de los fármacos , Multiómica
2.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38855154

RESUMEN

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Asunto(s)
Colon , Estreñimiento , Hidrógeno , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Sirtuina 1 , Animales , Humanos , Masculino , Ratas , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Estreñimiento/metabolismo , Estreñimiento/tratamiento farmacológico , Modelos Animales de Enfermedad , Heces/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hidrógeno/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Agua/metabolismo
3.
Food Funct ; 15(11): 6118-6133, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38764333

RESUMEN

Constipation is a major gastrointestinal (GI) symptom worldwide, with diverse causes of formation, and requires effective and safe therapeutic measures. In the present study, we used loperamide hydrochloride to establish a constipation model and assessed the effect of Bifidobacterium on constipation and its possible mechanism of relief. The results showed that B. longum S3 exerted a constipation-relieving effect primarily by improving the gut microbiota, enriching genera including Lactobacillus, Alistipes, and Ruminococcaceae UCG-007, and decreasing the bacteria Lachnospiraceae NK4B4 group. These changes may thereby increase acetic acid and stearic acid (C18:0) levels, which significantly increase the expression levels of ZO-1 and MUC-2, repair intestinal barrier damage and reduce inflammation (IL-6). Furthermore, it also inhibited oxidative stress levels (SOD and CAT), decreased the expression of water channel proteins (AQP4 and AQP8), significantly elevated the Gas, 5-HT, PGE2, and Ach levels, and reduced nNOS and VIP levels to improve the intestinal luminal transit time and fecal water content. Collectively, these changes resulted in the alleviation of constipation.


Asunto(s)
Ácido Acético , Bifidobacterium longum , Estreñimiento , Microbioma Gastrointestinal , Loperamida , Probióticos , Ácidos Esteáricos , Loperamida/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Animales , Ratones , Probióticos/farmacología , Ácidos Esteáricos/metabolismo , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Intestinos/microbiología
4.
Kaohsiung J Med Sci ; 40(6): 561-574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634140

RESUMEN

Slow transit constipation (STC) is one of the most common gastrointestinal disorders in children and adults worldwide. Paeoniflorin (PF), a monoterpene glycoside compound extracted from the dried root of Paeonia lactiflora, has been found to alleviate STC, but the mechanisms of its effect remain unclear. The present study aimed to investigate the effects and mechanisms of PF on intestinal fluid metabolism and visceral sensitization in rats with compound diphenoxylate-induced STC. Based on the evaluation of the laxative effect, the abdominal withdrawal reflex test, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were used to detect the visceral sensitivity, fluid metabolism-related proteins, and acid-sensitive ion channel 3/extracellular signal-regulated kinase (ASIC3/ERK) pathway-related molecules. PF treatment not only attenuated compound diphenoxylate-induced constipation symptoms and colonic pathological damage in rats but also ameliorated colonic fluid metabolic disorders and visceral sensitization abnormalities, as manifested by increased colonic goblet cell counts and mucin2 protein expression, decreased aquaporin3 protein expression, improved abdominal withdrawal reflex scores, reduced visceral pain threshold, upregulated serum 5-hydroxytryptamine, and downregulated vasoactive intestinal peptide levels. Furthermore, PF activated the colonic ASIC3/ERK pathway in STC rats, and ASIC3 inhibition partially counteracted PF's modulatory effects on intestinal fluid and visceral sensation. In conclusion, PF alleviated impaired intestinal fluid metabolism and abnormal visceral sensitization in STC rats and thus relieved their symptoms through activation of the ASIC3/ERK pathway.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Estreñimiento , Glucósidos , Sistema de Señalización de MAP Quinasas , Monoterpenos , Animales , Glucósidos/farmacología , Monoterpenos/farmacología , Monoterpenos/uso terapéutico , Canales Iónicos Sensibles al Ácido/metabolismo , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Ratas , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas Sprague-Dawley , Colon/metabolismo , Colon/efectos de los fármacos , Colon/patología , Tránsito Gastrointestinal/efectos de los fármacos , Acuaporina 3/metabolismo , Acuaporina 3/genética , Serotonina/metabolismo , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/metabolismo
5.
Food Funct ; 15(10): 5414-5428, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38639438

RESUMEN

Pitaya is a well-known fruit widely cultivated in tropical and subtropical tropical regions, and is characterized by its flesh colour into red, white, and yellow pitaya. Red pitaya has dark red flesh and is the preferred choice among consumers due to its superior taste compared to other varieties. Red pitaya has been known to cause diarrhoea, and studies have reported that pitaya does this by drawing moisture into the intestines, resulting in defecation. However, the exact mechanism of action is still unclear. In this study, mass spectrometry was employed to identify small molecular compounds in red pitaya powder, and a loperamide hydrochloride-induced early constipation mouse model was used to assess the efficacy of red pitaya. 16S rDNA and non-targeted metabolomics techniques were used to systematically reveal the regulatory characteristics of the intestinal flora and to identify the intestinal metabolites associated with constipation. The results showed that 44 novel small molecular compounds were identified from red pitaya powder, including a variety of phenolic acids and flavonoids. Pathological results showed that administration of red pitaya powder at a high dose (1000 mg kg-1) significantly ameliorated the abnormal expansion of intestinal goblet cells observed in the early stages of constipation. In addition, early constipation increased metabolites such as serotonin and 5-hydroxytryptophol, which were normalized following the ingestion of red pitaya powder. Furthermore, Erysipelatoclostridium, Parasutterella, and other abnormal gut microbiota associated with early constipation returned to healthy levels after the ingestion of red pitaya powder. Finally, significant correlations were observed between the expression of 33 different serum metabolites and the abundance of eight kinds of intestinal flora. Consequently, red pitaya holds potential as a safe food supplement for the prevention or amelioration of early-stage constipation.


Asunto(s)
Estreñimiento , Microbioma Gastrointestinal , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Cactaceae/química , Frutas/química , Metaboloma , Modelos Animales de Enfermedad , Metabolómica , Humanos
6.
Dig Dis Sci ; 69(4): 1318-1335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446304

RESUMEN

BACKGROUND: Constipation is one of the most common gastrointestinal complaints. Yet, the underlying mechanisms of constipation remain to be explored deeply. Integration of microbiome and metabolome is powerful and promising to demonstrate characteristics of constipation. AIM OF STUDY: This study aimed to characterize intestinal microbiome and metabolome of constipation. In addition, this study revealed the correlations among behaviors, intestinal microbiota, and metabolites interrupted by constipation. METHODS: Firstly, the constipation model was successfully applied. At the macro level, the ability of learning, memory, locomotor activity, and the defecation index of rats with constipation-like phenotype were characterized. At the micro-level, 16S rRNA sequencing was applied to analyze the intestinal microbiota in rats with constipation-like phenotype. 1H nuclear magnetic resonance (NMR)-based metabolomics was employed to investigate the metabolic phenotype of constipation. In addition, we constructed a correlation network, intuitively showing the correlations among behaviors, intestinal microbiota, and metabolites. RESULTS: Constipation significantly attenuated the locomotor activity, memory recognition, and frequency of defecation of rats, while increased the time of defecation. Constipation significantly changed the diversity of intestinal microbial communities, which correspondingly involved in 5 functional pathways. Besides, 28 fecal metabolites were found to be associated with constipation, among which 14 metabolites were further screened that can be used to diagnose constipation. On top of this, associated networks intuitively showed the correlations among behaviors, intestinal microbiota, and metabolites. CONCLUSIONS: The current findings are significant in terms of not only laying a foundation for understanding characteristics of constipation, but also providing accurate diagnosis and treatments of constipation clinically.


Asunto(s)
Microbiota , Ratas , Animales , ARN Ribosómico 16S/análisis , Metaboloma/genética , Tracto Gastrointestinal , Estreñimiento/metabolismo , Heces/química
7.
Adv Sci (Weinh) ; 11(20): e2306297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477534

RESUMEN

Disrupted gastrointestinal (GI) motility is highly prevalent in patients with inflammatory bowel disease (IBD), but its potential causative role remains unknown. Herein, the role and the mechanism of impaired GI motility in colitis pathogenesis are investigated. Increased colonic mucosal inflammation is found in patients with chronic constipation (CC). Mice with GI dysmotility induced by genetic mutation or chemical insult exhibit increased susceptibility to colitis, dependent on the gut microbiota. GI dysmotility markedly decreases the abundance of Lactobacillus animlalis and increases the abundance of Akkermansia muciniphila. The reduction in L. animlalis, leads to the accumulation of linoleic acid due to compromised conversion to conjugated linoleic acid. The accumulation of linoleic acid inhibits Treg cell differentiation and increases colitis susceptibility via inducing macrophage infiltration and proinflammatory cytokine expression in macrophage. Lactobacillus and A. muciniphila abnormalities are also observed in CC and IBD patients, and mice receiving fecal microbiota from CC patients displayed an increased susceptibility to colitis. These findings suggest that GI dysmotility predisposes host to colitis development by modulating the composition of microbiota and facilitating linoleic acid accumulation. Targeted modulation of microbiota and linoleic acid metabolism may be promising to protect patients with motility disorder from intestinal inflammation.


Asunto(s)
Colitis , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Motilidad Gastrointestinal , Ácido Linoleico , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Ácido Linoleico/metabolismo , Colitis/metabolismo , Colitis/microbiología , Colitis/inducido químicamente , Humanos , Ratones Endogámicos C57BL , Masculino , Estreñimiento/metabolismo , Estreñimiento/microbiología , Femenino , Akkermansia , Lactobacillus/metabolismo
8.
Mol Neurobiol ; 61(8): 5882-5900, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38244148

RESUMEN

Aurantii Fructus Immaturus total flavonoids (AFIF) is the main effective fraction extracted from AFI, which has a good effect on promoting gastrointestinal motility. This study aimed to investigate AFIF which regulates miR-5100 to improve constipation symptoms in mice by targeting Frizzled-2 (Fzd2) to alleviate interstitial cells of Cajal (ICCs) calcium ion balance and autophagy apoptosis. The constipated mouse model was induced by an antibiotic suspension, and then treated with AFIF. RNA-seq sequencing, luciferase assay, immunofluorescence staining, transmission electron microscopy, ELISA, flow cytometry, quantitative polymerase chain reaction (PCR), and Western blot were applied in this study. The results showed that AFIF improved constipation symptoms in antibiotic-induced constipated mice, and decreased the autophagy-related protein Beclin1 levels and the LC3-II/I ratio in ICCs. miR-5100 and its target gene Fzd2 were screened as key miRNAs and regulator associated with autophagy. Downregulation of miR-5100 caused increased expression of Fzd2, decreased proliferation activity of ICCs, increased apoptotic cells, and enhanced calcium ion release and autophagy signals. After AFIF treatment, miR-5100 expression was upregulated and Fzd2 was downregulated, while autophagy-related protein levels and calcium ion concentration decreased. Furthermore, AFIF increased the levels of SP, 5-HT, and VIP, and increased the expression of PGP9.5, Sy, and Cx43, which alleviated constipation by improving the integrity of the enteric nervous system network. In conclusion, AFIF could attenuate constipation symptoms by upregulating the expression of miR-5100 and targeting inhibition of Fzd2, alleviating calcium overload and autophagic death of ICCs, regulating the content of neurotransmitters, and enhancing the integrity of the enteric nervous system network.


Asunto(s)
Autofagia , Calcio , Estreñimiento , Flavonoides , Receptores Frizzled , Células Intersticiales de Cajal , MicroARNs , Animales , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Calcio/metabolismo , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Flavonoides/farmacología , Receptores Frizzled/metabolismo , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/efectos de los fármacos , Células Intersticiales de Cajal/patología , MicroARNs/genética , MicroARNs/metabolismo , Femenino
9.
Int J Biol Macromol ; 260(Pt 2): 129527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246435

RESUMEN

Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 â†’ 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.


Asunto(s)
Cistanche , Fármacos Neuroprotectores , Ratones , Animales , Cistanche/química , Fármacos Neuroprotectores/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Polisacáridos/farmacología , Polisacáridos/química
10.
Mol Nutr Food Res ; 68(4): e2300615, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38152983

RESUMEN

SCOPE: Torreya grandis kernel has traditionally been used to remove intestinal parasites and increases intestinal motility. However, the effect of Torreya grandis kernel oil (TKO) on constipation has not yet been investigated. Therefore, mouse model is used to investigate the effect of TKO on slow transit constipation (STC) and its possible mechanism. METHODS AND RESULTS: The effects of TKO on intestinal motility of STC mice are evaluated by fecal weight, fecal water content, colon length, defecation test, and intestinal propulsion test. The mechanism of TKO alleviating STC is explored by detecting biochemical analysis, histological analysis, western blot, qRT-PCR, immunohistochemistry, and gut microbiota analysis. The results reveal that TKO effectively promotes defecation and intestinal motility, increases the level of endothelin-1, and restores the histopathological morphology of the colon under LOP pretreatment. The expression levels of occludin, claudin-1, and zonula occludens-1 (ZO-1) mRNA and protein are up-regulated in mice receiving TKO treatment. The colonic 5-hydroxytryptamine 3R/4R (5-HT3R/5-HT4R) expressions are also increased by TKO supplementation. Additionally, TKO rescues LOP-caused disorders of the gut microbiota. CONCLUSION: Consumption of TKO is beneficial to STC recovery, and it can alleviate LOP-induced STC by up-regulating the colonic expressions of Occludin/Claudin-1/ZO-1 and 5-HT3R/5-HT4R.


Asunto(s)
Loperamida , Uniones Estrechas , Ratones , Animales , Loperamida/efectos adversos , Loperamida/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Ocludina/genética , Ocludina/metabolismo , Ratones Endogámicos BALB C , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo
11.
Exp Biol Med (Maywood) ; 248(23): 2449-2463, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38073524

RESUMEN

In clinical trials, rhubarb extract (Rb) was demonstrated to efficiently alleviate constipation. We would like to find out the underlying mechanism of rhubarb relieving constipation. However, there are few studies on the effects of rhubarb on colonic mucus secretion and constipation. The aim of this study was to investigate the effects of rhubarb on colonic mucus secretion and its underlying mechanism. The mice were randomly divided into four groups. Group I was the control group and Group II was the rhubarb control group, with Rb (24 g/kg body weight [b.w.]) administered through intragastric administration for three days. Group III mice were given diphenoxylate (20 mg/kg b.w.) for five days via gavage to induce constipation. Group IV received diphenoxylate lasting five days before undergoing Rb administration for three days. The condition of the colon was evaluated using an endoscope. Particularly, the diameter of blood vessels in the colonic mucosa expanded considerably in constipation mice along with diminishing mucus output, which was in line with the observation via scanning electron microscope (SEM) and transmission electron microscope (TEM). We also performed metagenomic analysis to reveal the microbiome related to mucin gene expression level referring to mucin secretion. In conclusion, Rb relieves constipation by rebuilding mucus homeostasis and regulating the microbiome.


Asunto(s)
Rheum , Ratones , Animales , Difenoxilato/metabolismo , Difenoxilato/farmacología , Difenoxilato/uso terapéutico , Mucinas/metabolismo , Mucinas/farmacología , Mucinas/uso terapéutico , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Colon/metabolismo , Moco/metabolismo , Homeostasis
12.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067494

RESUMEN

Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.


Asunto(s)
Antagonistas de Narcóticos , Estreñimiento Inducido por Opioides , Humanos , Antagonistas de Narcóticos/uso terapéutico , Analgésicos Opioides/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Estreñimiento Inducido por Opioides/tratamiento farmacológico , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Receptores Opioides/metabolismo
13.
J Physiol ; 601(21): 4751-4766, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772988

RESUMEN

A monosynaptic pathway connects the substantia nigra pars compacta (SNpc) to neurons of the dorsal motor nucleus of the vagus (DMV). This monosynaptic pathway modulates the vagal control of gastric motility. It is not known, however, whether this nigro-vagal pathway also modulates the tone and motility of the proximal colon. In rats, microinjection of retrograde tracers in the proximal colon and of anterograde tracers in SNpc showed that bilaterally labelled colonic-projecting neurons in the DMV received inputs from SNpc neurons. Microinjections of the ionotropic glutamate receptor agonist, NMDA, in the SNpc increased proximal colonic motility and tone, as measured via a strain gauge aligned with the colonic circular smooth muscle; the motility increase was inhibited by acute subdiaphragmatic vagotomy. Upon transfection of SNpc with pAAV-hSyn-hM3D(Gq)-mCherry, chemogenetic activation of nigro-vagal nerve terminals by brainstem application of clozapine-N-oxide increased the firing rate of DMV neurons and proximal colon motility; both responses were abolished by brainstem pretreatment with the dopaminergic D1-like antagonist SCH23390. Chemogenetic inhibition of nigro-vagal nerve terminals following SNpc transfection with pAAV-hSyn-hM4D(Gi)-mCherry decreased the firing rate of DMV neurons and inhibited proximal colon motility. These data suggest that a nigro-vagal pathway modulates activity of the proximal colon motility tonically via a discrete dopaminergic synapse in a manner dependent on vagal efferent nerve activity. Impairment of this nigro-vagal pathway may contribute to the severely reduced colonic transit and prominent constipation observed in both patients and animal models of parkinsonism. KEY POINTS: Substantia nigra pars compacta (SNpc) neurons are connected to the dorsal motor nucleus of the vagus (DMV) neurons via a presumed direct pathway. Brainstem neurons in the lateral DMV innervate the proximal colon. Colonic-projecting DMV neurons receive inputs from neurons of the SNpc. The nigro-vagal pathway modulates tone and motility of the proximal colon via D1-like receptors in the DMV. The present study provides the mechanistic basis for explaining how SNpc alterations may lead to a high rate of constipation in patients with Parkinson's Disease.


Asunto(s)
Estómago , Sustancia Negra , Humanos , Ratas , Animales , Estómago/fisiología , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Nervio Vago/fisiología , Motilidad Gastrointestinal/fisiología , Colon , Estreñimiento/metabolismo
14.
ACS Nano ; 17(14): 13377-13392, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37449942

RESUMEN

Intestinal metabolism-related diseases, such as constipation, inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, could be associated with the dysfunction of intestinal mitochondria. The mitochondria of intestinal epithelial cells are of great significance for promoting intestinal motility and maintaining intestinal metabolism. It is necessary for the prophylaxis and therapy of intestinal metabolism-related diseases to improve mitochondrial function. We investigated the effect of 4,6-diamino-2-pyrimidinethiol-modified gold nanoparticles (D-Au NPs) on intestinal mitochondria and studied the regulatory role of D-Au NPs on mitochondria metabolism-related disease. D-Au NPs improved the antioxidation capability of mitochondria, regulated the mitochondrial metabolism, and maintained intestinal cellular homeostasis via the activation of AMPK and regulation of PGC-1α with its downstream signaling (UCP2 and DRP1), enhancing the intestinal mechanical barrier. D-Au NPs improved the intestinal mitochondrial function to intervene in the emergence of constipation, which could help develop drugs to treat and prevent mitochondrial metabolism-related diseases. Our findings provided an in-depth understanding of the mitochondrial effects of Au NPs for improving human intestinal barriers.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro/metabolismo , Nanopartículas del Metal/uso terapéutico , Ligandos , Mitocondrias , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo
15.
Neurosci Lett ; 812: 137395, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37451357

RESUMEN

Enteric glial cells are emerging as critical players in the regulation of intestinal motility, secretion, epithelial barrier function, and gut homeostasis in health and disease. Enteric glia react to intestinal inflammation by converting to a 'reactive glial phenotype' and enteric gliosis, contributing to neuroinflammation, enteric neuropathy, bowel motor dysfunction and dysmotility, diarrhea or constipation, 'leaky gut', and visceral pain. The focus of the minireview is on the impact of inflammation on enteric glia reactivity in response to diverse insults such as intestinal surgery, ischemia, infections (C. difficile infection, HIV-Tat-induced diarrhea, endotoxemia and paralytic ileus), GI diseases (inflammatory bowel diseases, diverticular disease, necrotizing enterocolitis, colorectal cancer) and functional GI disorders (postoperative ileus, chronic intestinal pseudo-obstruction, constipation, irritable bowel syndrome). Significant progress has been made in recent years on molecular pathogenic mechanisms of glial reactivity and enteric gliosis, resulting in enteric neuropathy, disruption of motility, diarrhea, visceral hypersensitivity and abdominal pain. There is a growing number of glial molecular targets with therapeutic implications that includes receptors for interleukin-1 (IL-1R), purines (P2X2R, A2BR), PPARα, lysophosphatidic acid (LPAR1), Toll-like receptor 4 (TLR4R), estrogen-ß receptor (ERß) adrenergic α-2 (α-2R) and endothelin B (ETBR), connexin-43 / Colony-stimulating factor 1 signaling (Cx43/CSF1) and the S100ß/RAGE signaling pathway. These exciting new developments are the subject of the minireview. Some of the findings in pre-clinical models may be translatable to humans, raising the possibility of designing future clinical trials to test therapeutic application(s). Overall, research on enteric glia has resulted in significant advances in our understanding of GI pathophysiology.


Asunto(s)
Clostridioides difficile , Sistema Nervioso Entérico , Enfermedades Gastrointestinales , Seudoobstrucción Intestinal , Humanos , Recién Nacido , Gliosis/metabolismo , Sistema Nervioso Entérico/patología , Enfermedades Gastrointestinales/terapia , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/patología , Neuroglía/metabolismo , Inflamación/metabolismo , Dolor Abdominal/metabolismo , Dolor Abdominal/patología , Motilidad Gastrointestinal , Diarrea/metabolismo , Diarrea/patología , Estreñimiento/metabolismo , Seudoobstrucción Intestinal/terapia , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología
16.
Food Funct ; 14(10): 4836-4846, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37129213

RESUMEN

Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.


Asunto(s)
Malus , Proantocianidinas , Simportadores , Ratas , Humanos , Animales , Malus/metabolismo , Loperamida/efectos adversos , Proantocianidinas/farmacología , Células CACO-2 , Simportadores/genética , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Íleon/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108354

RESUMEN

Amomum tsaoko (AT) is a dietary botanical with laxative properties; however, the active ingredients and mechanisms are still unclear. The active fraction of AT aqueous extract (ATAE) for promoting defecation in slow transit constipation mice is the ethanol-soluble part (ATES). The total flavonoids of ATES (ATTF) were the main active component. ATTF significantly increased the abundance of Lactobacillus and Bacillus and reduced the dominant commensals, such as Lachnospiraceae, thereby changing the gut microbiota structure and composition. Meanwhile, ATTF changed the gut metabolites mainly enriched in pathways such as the serotonergic synapse. In addition, ATTF increased the serum serotonin (5-HT) content and mRNA expression of 5-hydroxytryptamine receptor 2A (5-HT2A), Phospholipase A2 (PLA2), and Cyclooxygenase-2 (COX2), which are involved in the serotonergic synaptic pathway. ATTF increased Transient receptor potential A1 (TRPA1), which promotes the release of 5-HT, and Myosin light chain 3(MLC3), which promotes smooth muscle motility. Notably, we established a network between gut microbiota, gut metabolites, and host parameters. The dominant gut microbiota Lactobacillus and Bacillus, prostaglandin J2 (PGJ2) and laxative phenotypes showed the most significant associations. The above results suggest that ATTF may relieve constipation by regulating the gut microbiota and serotonergic synaptic pathway and has great potential for laxative drug development in the future.


Asunto(s)
Amomum , Microbioma Gastrointestinal , Ratones , Animales , Loperamida/efectos adversos , Laxativos/farmacología , Laxativos/uso terapéutico , Flavonoides/efectos adversos , Serotonina/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo
18.
Int J Biol Macromol ; 235: 123930, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889616

RESUMEN

This study aimed to reveal the constipation-relieving role of chitosan (COS) with different molecular weights (1 kDa, 3 kDa and 244 kDa). Compared with COS3K (3 kDa) and COS240K (244 kDa), COS1K (1 kDa) more significantly accelerated gastrointestinal transit and defecation frequency. These differential effects were reflected in the regulation of specific gut microbiota (Desulfovibrio, Bacteroides, Parabacteroides and Anaerovorax) and short-chain fatty acids (propionic acid, butyric acid and valeric acid). RNA-sequencing found that the differential expressed genes (DEGs) caused by different molecular weights of COS were mainly enriched in intestinal immune-related pathways, especially cell adhesion molecules. Furthermore, network pharmacology revealed two candidate genes (Clu and Igf2), which can be regarded as the key molecules for the differential anti-constipation effects of COS with different molecular weights. These results were further verified by qPCR. In conclusion, our results provide a novel research strategy to help understand the differences in the anti-constipation effects of chitosan with different molecular weights.


Asunto(s)
Quitosano , Animales , Ratones , Ácido Butírico , Quitosano/farmacología , Estreñimiento/metabolismo , Peso Molecular , Farmacología en Red , Propionatos/química
19.
Microb Pathog ; 178: 106084, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36990166

RESUMEN

Atractylodes macrocephala polysaccharide (AC1) is extracted from the root of the Chinese herb Atractylodes Macrocephala and is used in the treatment of constipation due to its effects on strengthening cellular immunity and regulating intestinal function. In this study, Metagenomics and Metabolomic are used to analyze the effects of AC1 on the gut microbiota and host metabolites in mice models of constipation. The results show that the abundance of Lachnospiraceae_bacterium_A4, Bact-oides_vulgatus and Prevotella_sp_CAG:891 increased significantly, indicating that AC1-targeted strain modulation effectively alleviated the dysbiosis of the gut microbiota. Besides, the microbial alterations also influenced the metabolic pathways of the mice, including tryptophan metabolism, unsaturated fatty acid synthesis and bile acid metabolism. The physiological parameters of the mice treated with AC1 are improved, such as tryptophan in the colon, 5-hydroxytryptamine (5-HT) and short-chain fatty acids (SCFAs). In conclusion, AC1 as a probiotic can regulate intestinal flora to normal levels and achieve the effect of treating constipation.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Triptófano , Estreñimiento/metabolismo , Polisacáridos/farmacología , Metaboloma
20.
Front Cell Infect Microbiol ; 13: 1105272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992686

RESUMEN

Constipation is a common gastrointestinal symptom characterized by intestinal motility disorder. The effects of Platycodon grandiflorum polysaccharides (PGP) on intestinal motility have not been confirmed. We established a rat model of constipation induced by loperamide hydrochloride to elucidate the therapeutic effect of PGP on intestinal motility disorder and to explore the possible mechanism. After PGP treatment (400 and 800 mg/kg) for 21 d, PGP clearly relieved gastrointestinal motility, including fecal water content, gastric emptying rate, and intestinal transit rate. Moreover, the secretion of motility-related hormones, gastrin and motilin, were increased. Enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and immunofluorescence results confirmed that PGP significantly increased the secretion of 5-hydroxytryptamine (5-HT) and the expression of related proteins, such as tryptophan hydroxylase 1, 5-HT4 receptor, and transient receptor potential ankyrin 1. 16S rRNA gene sequencing showed that PGP significantly increased the relative abundance of Roseburia, Butyricimonas, and Ruminiclostridium, which were positively correlated with 5-HT levels. However, the relative abundance of Clostridia_UCG-014, Lactobacillus, and Enterococcus were decreased. PGP improved intestinal transport by regulating the levels of 5-HT, which interacts with the gut microbiota and the intestinal neuro-endocrine system, further affecting constipation. Overall, PGP is a potential supplement for the treatment of constipation.


Asunto(s)
Microbioma Gastrointestinal , Platycodon , Ratas , Animales , Loperamida/efectos adversos , Serotonina , Platycodon/metabolismo , ARN Ribosómico 16S , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Motilidad Gastrointestinal , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA