Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
1.
ACS Chem Biol ; 19(7): 1661-1670, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38975966

RESUMEN

The calcium-sensing receptor (CaSR), abundantly expressed in the parathyroid gland and kidney, plays a central role in calcium homeostasis. In addition, CaSR exerts multimodal roles, including inflammation, muscle contraction, and bone remodeling, in other organs and tissues. The diverse functions of CaSR are mediated by many endogenous and exogenous ligands, including calcium, amino acids, glutathione, cinacalcet, and etelcalcetide, that have distinct binding sites in CaSR. However, strategies to evaluate ligand interactions with CaSR remain limited. Here, we developed a glutathione-based photoaffinity probe, DAZ-G, that analyzes ligand binding to CaSR. We showed that DAZ-G binds to the amino acid binding site in CaSR and acts as a positive allosteric modulator of CaSR. Oxidized and reduced glutathione and phenylalanine effectively compete with DAZ-G conjugation to CaSR, while calcium, cinacalcet, and etelcalcetide have cooperative effects. An unexpected finding was that caffeine effectively competes with DAZ-G's conjugation to CaSR and acts as a positive allosteric modulator of CaSR. The effective concentration of caffeine for CaSR activation (<10 µM) is easily attainable in plasma by ordinary caffeine consumption. Our report demonstrates the utility of a new chemical probe for CaSR and discovers a new protein target of caffeine, suggesting that caffeine consumption can modulate the diverse functions of CaSR.


Asunto(s)
Cafeína , Glutatión , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Cafeína/química , Cafeína/farmacología , Cafeína/metabolismo , Glutatión/metabolismo , Glutatión/química , Calcio/metabolismo , Etiquetas de Fotoafinidad/química , Sitios de Unión , Células HEK293 , Ligandos , Cinacalcet/química , Cinacalcet/farmacología
2.
J Am Chem Soc ; 146(26): 17801-17816, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887845

RESUMEN

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.


Asunto(s)
Química Clic , Gangliósidos , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Membrana Celular/metabolismo , Membrana Celular/química
3.
Bioorg Med Chem ; 110: 117815, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38943807

RESUMEN

The adenylation (A) domain of non-ribosomal peptide synthetases (NRPSs) catalyzes the adenylation reaction with substrate amino acids and ATP. Leveraging the distinct substrate specificity of A-domains, we previously developed photoaffinity probes for A-domains based on derivatization with a 5'-O-N-(aminoacyl)sulfamoyl adenosine (aminoacyl-AMS)-appended clickable benzophenone. Although our photoaffinity probes with different amino acid warheads enabled selective detection, visualization, and enrichment of target A-domains in proteomic environments, the effects of photoaffinity linkers have not been investigated. To explore the optimal benzophenone-based linker scaffold, we designed seven photoaffinity probes for the A-domains with different lengths, positions, and molecular shapes. Using probes 2-8 for the phenylalanine-activating A-domain of gramicidin S synthetase A (GrsA), we systematically investigated the binding affinity and labeling efficiency of the endogenous enzyme in a live producer cell. Our results indicated that the labeling efficiencies of probes 2-8 tended to depend on their binding affinities rather than on the linker length, flexibility, or position of the photoaffinity group. We also identified that probe 2 with a 4,4'-diaminobenzophenone linker exhibits the highest labeling efficiency for GrsA with fewer non-target labeling properties in live cells.


Asunto(s)
Benzofenonas , Péptido Sintasas , Etiquetas de Fotoafinidad , Benzofenonas/química , Benzofenonas/síntesis química , Benzofenonas/farmacología , Benzofenonas/metabolismo , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Péptido Sintasas/metabolismo , Péptido Sintasas/química , Estructura Molecular
4.
Curr Opin Chem Biol ; 80: 102456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705088

RESUMEN

Glycans decorate all cells and are critical mediators of cellular processes through recognition by glycan-binding proteins (GBPs). While targeting glycan-protein interactions has great therapeutic potential, these interactions are challenging to study as they are generally transient and exhibit low binding affinities. Glycan-based photo-crosslinkable probes have enabled covalent capture and identification of unknown GBP receptors and glycoconjugate ligands. Here, we review recent progress in photo-crosslinking approaches targeting glycan-mediated interactions. We discuss two prominent emerging strategies: 1) development of photo-crosslinkable oligosaccharide ligands to identify GBP receptors; and 2) cell-surface glyco-engineering to identify glycoconjugate ligands of GBPs. Overall, photoaffinity labeling affords valuable insights into complex glycan-protein networks and is poised to help elucidate the glycan-protein interactome, providing novel targets for therapeutic intervention.


Asunto(s)
Etiquetas de Fotoafinidad , Polisacáridos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/metabolismo , Polisacáridos/metabolismo , Polisacáridos/química , Humanos , Unión Proteica , Proteínas/metabolismo , Proteínas/química , Ligandos , Animales , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo
5.
Chembiochem ; 25(15): e202400187, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639212

RESUMEN

Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Proteómica , Vitamina K 3 , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Vitamina K 3/farmacología , Vitamina K 3/química , Vitamina K 3/metabolismo , Proteínas Protozoarias/metabolismo , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/farmacología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Sondas Moleculares/química , Sondas Moleculares/farmacología , Proteoma/análisis , Proteoma/metabolismo , Estructura Molecular
6.
Nat Chem Biol ; 20(7): 823-834, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38167919

RESUMEN

Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.


Asunto(s)
Etiquetas de Fotoafinidad , Bibliotecas de Moléculas Pequeñas , Sitios de Unión , Humanos , Etiquetas de Fotoafinidad/química , Bibliotecas de Moléculas Pequeñas/química , Unión Proteica , Proteómica/métodos , Proteoma/metabolismo , Proteínas/química , Proteínas/metabolismo , Péptidos/química , Péptidos/metabolismo
7.
Adv Sci (Weinh) ; 11(8): e2305608, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38095542

RESUMEN

As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.


Asunto(s)
Descubrimiento de Drogas , Etiquetas de Fotoafinidad , Ligandos , Descubrimiento de Drogas/métodos , Etiquetas de Fotoafinidad/química , Química Clic
8.
Nat Commun ; 14(1): 8016, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049406

RESUMEN

Understanding how small molecules bind to specific protein complexes in living cells is critical to understanding their mechanism-of-action. Unbiased chemical biology strategies for direct readout of protein interactome remodelling by small molecules would provide advantages over target-focused approaches, including the ability to detect previously unknown ligand targets and complexes. However, there are few current methods for unbiased profiling of small molecule interactomes. To address this, we envisioned a technology that would combine the sensitivity and live-cell compatibility of proximity labelling coupled to mass spectrometry, with the specificity and unbiased nature of chemoproteomics. In this manuscript, we describe the BioTAC system, a small-molecule guided proximity labelling platform that can rapidly identify both direct and complexed small molecule binding proteins. We benchmark the system against µMap, photoaffinity labelling, affinity purification coupled to mass spectrometry and proximity labelling coupled to mass spectrometry datasets. We also apply the BioTAC system to provide interactome maps of Trametinib and analogues. The BioTAC system overcomes a limitation of current approaches and supports identification of both inhibitor bound and molecular glue bound complexes.


Asunto(s)
Biotina , Proteínas , Proteínas/metabolismo , Cromatografía de Afinidad , Espectrometría de Masas/métodos , Etiquetas de Fotoafinidad/química
9.
Bioconjug Chem ; 34(12): 2181-2186, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38052453

RESUMEN

Target identification studies are a major hurdle in probe and drug discovery pipelines due to the need to chemically modify small molecules of interest, which can be time intensive and have low throughput. Here, we describe a versatile and scalable method for attaching chemical moieties to a small molecule, isocyanate-mediated chemical tagging (IMCT). By preparation of a template resin with an isocyanate capture group and a cleavable linker, nucleophilic groups on small molecules can be modified with an enforced one-to-one stoichiometry. We demonstrate a small molecule substrate scope that includes primary and secondary amines, thiols, phenols, benzyl alcohols, and primary alcohols. Cheminformatic analyses predict that IMCT is reactive with more than 25% of lead-like compounds in publicly available databases. To demonstrate that the method can produce biologically active molecules, we generated FKBP12 photoaffinity labeling (PAL) compounds with a wide range of affinities and showed that purified and crude cleavage products can bind to and label FKBP12. This method could be used to rapidly modify small molecules for many applications, including the synthesis of PAL probes, fluorescence polarization probes, pull-down probes, and degraders.


Asunto(s)
Isocianatos , Proteína 1A de Unión a Tacrolimus , Descubrimiento de Drogas , Compuestos de Sulfhidrilo , Etiquetas de Fotoafinidad/química
10.
Angew Chem Int Ed Engl ; 62(49): e202314248, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37847865

RESUMEN

Glycan recognition by glycan-binding proteins is central to the biology of all living organisms. The efficient capture and characterization of relatively weak non-covalent interactions remains an important challenge in various fields of research. Photoaffinity labeling strategies can create covalent bonds between interacting partners, and photoactive scaffolds such as benzophenone, diazirines and aryl azides have proved widely useful. Since their first introduction, relatively few improvements have been advanced and products of photoaffinity labeling remain difficult to detect. We report a fluorinated azido-coumarin scaffold which enables photolabeling under fast and mild activation, and which can leave a fluorescent tag on crosslinked species. Coupling this scaffold to an α-fucoside, we demonstrate fluorogenic photolabeling of glycan-protein interactions over a wide range of affinities. We expect this strategy to be broadly applicable to other chromophores and we envision that such "fluoro-crosslinkers" could become important tools for the traceable capture of non-covalent binding events.


Asunto(s)
Proteínas Portadoras , Proteínas , Proteínas/química , Etiquetas de Fotoafinidad/química , Cumarinas , Azidas/metabolismo , Polisacáridos
11.
Nat Chem ; 15(9): 1267-1275, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322100

RESUMEN

Target identification involves deconvoluting the protein target of a pharmacologically active, small-molecule ligand, a process that is critical for early drug discovery yet technically challenging. Photoaffinity labelling strategies have become the benchmark for small-molecule target deconvolution, but covalent protein capture requires the use of high-energy ultraviolet light, which can complicate downstream target identification. Thus, there is a strong demand for alternative technologies that allow for controlled activation of chemical probes to covalently label their protein target. Here we introduce an electroaffinity labelling platform that leverages the use of a small, redox-active diazetidinone functional group to enable chemoproteomic-based target identification of pharmacophores within live cell environments. The underlying discovery to enable this platform is that the diazetidinone can be electrochemically oxidized to reveal a reactive intermediate useful for covalent modification of proteins. This work demonstrates the electrochemical platform to be a functional tool for drug-target identification.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Proteínas/metabolismo , Etiquetas de Fotoafinidad/química , Ligandos , Farmacóforo
12.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920024

RESUMEN

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Asunto(s)
Ácido Aspártico Endopeptidasas , Catepsina D , Pepstatinas , Etiquetas de Fotoafinidad , Humanos , Ácido Aspártico Endopeptidasas/química , Catepsina D/química , Diazometano , Pepstatinas/química , Pepstatinas/farmacología , Etiquetas de Fotoafinidad/química , Proteína Sequestosoma-1/química
13.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771073

RESUMEN

In materials (polymer) science and medicinal chemistry, heteroaromatic derivatives play the role of the central skeleton in development of novel devices and discovery of new drugs. On the other hand, (3-trifluoromethyl)phenyldiazirine (TPD) is a crucial chemical method for understanding biological processes such as ligand-receptor, nucleic acid-protein, lipid-protein, and protein-protein interactions. In particular, use of TPD has increased in recent materials science to create novel electric and polymer devices with comparative ease and reduced costs. Therefore, a combination of heteroaromatics and (3-trifluoromethyl)diazirine is a promising option for creating better materials and elucidating the unknown mechanisms of action of bioactive heteroaromatic compounds. In this review, a comprehensive synthesis of (3-trifluoromethyl)diazirine-substituted heteroaromatics is described.


Asunto(s)
Ácidos Nucleicos , Etiquetas de Fotoafinidad , Etiquetas de Fotoafinidad/química , Diazometano/química , Química Farmacéutica , Proteínas/química
14.
J Neurosci ; 43(13): 2338-2348, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36849414

RESUMEN

Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.


Asunto(s)
Anestésicos Intravenosos , Encéfalo , Hipnosis , Hipnóticos y Sedantes , Ligandos , Etiquetas de Fotoafinidad , Propofol , Animales , Masculino , Ratones , Neuronas Adrenérgicas/efectos de los fármacos , Anestesia Intravenosa , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Electrocorticografía , Electroencefalografía , Hipnosis/métodos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/química , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/efectos de la radiación , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de la radiación , Ratones Endogámicos C57BL , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/efectos de la radiación , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/efectos de la radiación , Propofol/administración & dosificación , Propofol/análogos & derivados , Propofol/farmacología , Propofol/efectos de la radiación , Factores de Tiempo , Rayos Ultravioleta , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/química , Anestésicos Intravenosos/farmacología , Anestésicos Intravenosos/efectos de la radiación
15.
Acc Chem Res ; 56(1): 25-36, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36534922

RESUMEN

Despite advances in genome sequencing technology, the complete molecular interaction networks reflecting the biological functions of gene products have not been fully elucidated due to the lack of robust molecular interactome profiling techniques. Traditionally, molecular interactions have been investigated in vitro by measuring their affinity. However, such a reductionist approach comes with throughput constraints and does not depict an intact living cell environment. Therefore, molecular interactions in live cells must be captured to minimize false-positive results. The photo-cross-linking technique is a promising tool because the production of a temporally controlled reactive functional group can be induced using light exposure. Photoaffinity labeling is used in biochemistry and medicinal chemistry for bioconjugation, including drug and antibody conjugation, target protein identification of bioactive compounds, and fluorescent labeling of target proteins. This Account summarizes recent advances in multifunctional photo-cross-linkers for drug target identification and bioimaging. In addition to our group's contributions, we reviewed the most notable examples from the last few decades to provide a comprehensive overview of how this field is evolving. Based on cross-linking chemistry, photo-cross-linkers are classified as either (i) reactive intermediate-generating or (ii) electrophile-generating. Reactive intermediates generating photoaffinity tags have been extensively modified to target a molecule of interest using aryl azide, benzophenone, diazirine, diazo, and acyl silanes. These species are highly reactive and can form covalent bonds, irrespective of residue. Their short lifetime is ideal for the instant capture and labeling of biomolecules. Recently, photocaged electrophiles have been investigated to take advantage of their residue selectivity and relatively high yield for adduct formation with tetrazole, nitrobenzyl alcohol, o-nitrophenylethylene, pyrone, and pyrimidone. Multifunctional photo-cross-linkers for two parallel practical applications have been developed using both classes of photoactivatable groups. Unbiased target interactome profiling of small-molecule drugs requires a challenging structure-activity relationship study (SAR) step to retain the nature or biological activity of the lead compound, which led to the design of a multifunctional "minimalist tag" comprising a bio-orthogonal handle, a photoaffinity labeling group, and functional groups to load target molecules. In contrast, fluorogenic photo-cross-linking is advantageous for bioimaging because it does not require an additional bio-orthogonal reaction to introduce a fluorophore to the minimalist tag. Our group has made progress on minimalist tags and fluorogenic photo-cross-linkers through fruitful collaborations with other groups. The current range of photoactivation reactions and applications demonstrate that photoaffinity tags can be improved. We expect exciting days in the rational design of new multifunctional photo-cross-linkers, particularly clinically interesting versions used in photodynamic or photothermal therapy.


Asunto(s)
Etiquetas de Fotoafinidad , Proteínas , Proteínas/química , Relación Estructura-Actividad , Diazometano , Pirimidinonas
16.
J Org Chem ; 88(1): 1-17, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399052

RESUMEN

The previously unknown difluoromethyl diazirines and the previously neglected trifluoromethyl-aliphatic diazirines were synthesized and characterized. Model photolabeling experiments and biological studies showed that these compounds could indeed be used as photoaffinity labels.


Asunto(s)
Diazometano , Etiquetas de Fotoafinidad
17.
J Am Chem Soc ; 144(46): 21174-21183, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350779

RESUMEN

Alkyl diazirines are frequently used in photoaffinity labeling to map small molecule-protein interactions in target identification studies. However, the alkyl diazirines can preferentially label acidic amino acids and acidic protein surfaces in a pH-dependent manner, presumably via a reactive alkyl diazo intermediate. Here, we explore the use of ring strain to alter these reactivity preferences and report the development of a cyclobutane diazirine photoaffinity tag with reduced pH-dependent reactivity, termed PALBOX. We show that PALBOX possesses differential reactivity profiles as compared to other diazirine tags in vitro and is readily incorporated into small molecules to profile their binding interactions in cells. Using a set of small molecule fragments and ligands, we show that photoaffinity probes equipped with PALBOX can label the known protein targets in cells with reduced labeling of known alkyl diazirine off-targets. Finally, we demonstrate that ligands equipped with PALBOX can accurately map small molecule-protein binding sites. Thus, PALBOX is a versatile diazirine-based photoaffinity tag for use in the development of chemical probes for photoaffinity labeling experiments, including the study of small molecule-protein interactions.


Asunto(s)
Ciclobutanos , Diazometano , Diazometano/química , Alquinos , Etiquetas de Fotoafinidad/química , Ligandos , Proteínas de la Membrana
18.
Angew Chem Int Ed Engl ; 61(47): e202209947, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36151600

RESUMEN

Photoaffinity labeling is a powerful technique to interrogate drug-protein interactions in native cellular environments. Photo-cross-linkers are instrumental for this technique. However, the introduction of unnatural photo-cross-linkers may significantly reduce the bioactivity of the drug, thus impairing the chemoproteomic outcomes. Herein, we developed a common pharmacophore, isoxazole, into a natively embedded photo-cross-linker for chemoproteomics, which minimally perturbs the drug structure. The photo-cross-linking reactions of the isoxazole were thoroughly investigated for the first time. Functionalized isoxazoles were then designed and applied to protein labeling, demonstrating the superior photo-cross-linking efficiency. Subsequently, two isoxazole-based drugs, Danazol and Luminespib, were employed in chemoproteomic studies, revealing their potential cellular targets. These results provide valuable strategies for future chemoproteomic study and drug development.


Asunto(s)
Etiquetas de Fotoafinidad , Proteínas , Etiquetas de Fotoafinidad/química , Proteínas/química , Isoxazoles , Reactivos de Enlaces Cruzados/química
19.
Curr Opin Chem Biol ; 69: 102173, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724595

RESUMEN

Lipid-protein interactions serve as the basis for many of the diverse roles of lipids. However, these noncovalent binding events are often weak, transient, or dependent upon environmental cues. Photoaffinity labeling can preserve these interactions under native conditions, enabling their biochemical profiling. Typically, photoaffinity labeling probes contain a diazirine photocrosslinker and a click chemistry handle for enrichment and downstream analysis. In this review, we summarize recent advances in the understanding the mechanisms of diazirine photocrosslinking, and we provide an overview of recent applications of photoaffinity labeling to reveal the interactions of diverse types of lipids with specific members of the proteome.


Asunto(s)
Diazometano , Etiquetas de Fotoafinidad , Química Clic , Lípidos , Etiquetas de Fotoafinidad/metabolismo
20.
Bioorg Med Chem ; 67: 116819, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635930

RESUMEN

A series of salicylanilide compounds was previously identified as antibacterial agents that inhibit the peptidoglycan formation. To find the exact binding mode, we synthesized a benzophenone-containing salicylanilide compound (1) and used it as a photoaffinity probe to label Acinetobacter baumannii penicillin-binding protein (PBP1b). After incubation and photo-irradiation, the labeled protein was subjected to trypsin digestion, dialysis enrichment, LC-ESI-MS/MS analysis, and Mascot search to reveal an octadecapeptide sequence 364RQLRTEYQESDLTNQGLR381 that was labeled at E372. Our molecular docking experiments suggest a hydrophobic pocket surrounded by R367 and E372 is the binding site of salicylanilide 1. The pocket lies in between the transglycosylase and transpeptidase domains, thus binding of salicylanilide 1 can block the propagation pathway to disrupt the growth of peptidoglycan chain.


Asunto(s)
Peptidoglicano Glicosiltransferasa , Benzofenonas/farmacología , Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Peptidoglicano , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/metabolismo , Etiquetas de Fotoafinidad , Salicilanilidas , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA