Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.147
Filtrar
1.
J Physiol Pharmacol ; 75(3)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39042385

RESUMEN

Pentylenetetrazole- (PTZ)-induced kindling is a broadly used experimental model to evaluate the impact of antiseizure drugs and their novel combination on seizure progression. The current study aimed to evaluate the anti-kindling effects of ivermectin (IVM) and rufinamide (RUFI) alone and their combination with vitamin E. The mice were administered 11 injections of PTZ (40 mg/kg) followed by assessment for anxiety-like behavior and cognitive abilities in a series of behavior tests with subsequent brain isolation for biochemical and histopathological evaluation. The outcomes showed a marked protection by IVM + RUFI (P<0.001) from kindling progression, anxiety-like behavior and cognitive deficit. However, additional supplementation with vitamin E worked superior to duo therapy as these mice were noted to be most fearless to visiting open, illuminated and elevated zones of open field, light/dark and elevated-plus maze (P<0.0001). Further, they showed marked remembrance of the familiar milieu in y-maze (P<0.01) and novel objection recognition (P<0.05) tests. Additionally, their recollection of aversive stimuli in passive avoidance and spatial memory in Morris water maze were evident (P<0.0001), in comparison to kindled mice. The IVM + RUFI duo therapy and its co-administration with vitamin E prevented kindling-triggered oxidative stress in brains and neuronal damage in hippocampus. We conclude that the benefits of the co-administration of vitamin E might be the results of antioxidant and anti-inflammatory effects of vitamin E which might be potentiating the antiseizure effects of RUFI and GABA-A modulating potential by ivermectin.


Asunto(s)
Anticonvulsivantes , Conducta Animal , Ivermectina , Excitación Neurológica , Pentilenotetrazol , Convulsiones , Triazoles , Vitamina E , Animales , Excitación Neurológica/efectos de los fármacos , Vitamina E/farmacología , Vitamina E/administración & dosificación , Ratones , Ivermectina/farmacología , Ivermectina/administración & dosificación , Anticonvulsivantes/farmacología , Anticonvulsivantes/administración & dosificación , Masculino , Convulsiones/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Triazoles/farmacología , Triazoles/administración & dosificación , Quimioterapia Combinada , Ansiedad/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo
2.
Brain Res ; 1838: 148994, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729331

RESUMEN

PTZ kindling induces oxidative stress, neuronal cell degeneration, and neurobehavioral alterations in rodents that mimic neuropsychiatric comorbidities of epilepsy, which could be initiated or aggravated by some antiepileptic drugs. Here, we investigated the effects of the methanol extract of Ficus platyphylla (FP) on severity scores for seizures, neuronal cell degeneration, and neurobehavioral alterations in rats kindled with pentylenetetrazole (PTZ) and probed the involvement of oxidative stress in these ameliorative effects of FP. FP (50 and 100 mg/kg, p.o.) ameliorated seizure severity, neuronal cell degeneration, depressive behaviors, cognitive dysfunctions, and oxidative stress in rats kindled with PTZ (42.5 mg/kg, i.p.). The findings from this study give additional insights into the potential values of FP in the treatment of persistent epilepsy and major neuropsychiatric comorbidities via modulation of oxidative stress.


Asunto(s)
Anticonvulsivantes , Ficus , Excitación Neurológica , Estrés Oxidativo , Pentilenotetrazol , Extractos Vegetales , Convulsiones , Animales , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Excitación Neurológica/efectos de los fármacos , Masculino , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Ratas , Anticonvulsivantes/farmacología , Ratas Wistar , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente
3.
Biomed Pharmacother ; 175: 116791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776672

RESUMEN

Epilepsy is an abiding condition associated with recurrent seizure attacks along with associated neurological and psychological emanation owing to disparity of excitatory and inhibitory neurotransmission. The current study encompasses the assessment of the Nyctanthes arbor-tristis L. methanolic extract (Na.Cr) in the management of convulsive state and concomitant conditions owing to epilepsy. The latency of seizure incidence was assessed using pentylenetetrazol (PTZ) kindling models along with EEG in Na.Cr pretreated mice, trailed by behavior assessment (anxiety and memory), biochemical assay, histopathological alterations, chemical profiling through GCMS, and molecular docking. The chronic assessment of PTZ-induced kindled mice depicted salvation in a dose-related pattern and outcomes were noticeable with extract at 400 mg/kg. The extract at 400 mg/kg defends the progress of kindling seizures and associated EEG. Co-morbid conditions in mice emanating owing to epileptic outbreaks were validated by behavioral testing and the outcome depicted a noticeable defense related to anxiety (P<0.001) and cognitive deficit (P<0.001) at 400 mg/kg. The isolated brains were evaluated for oxidative stress and the outcome demonstrated a noticeable effect in a dose-dependent pattern. Treatment with Na.Cr. also preserved the brain from PTZ induced neuronal damage as indicated by histopathological analysis. Furthermore, the GCMS outcome predicted 28 compounds abundantly found in the plant. The results congregated in the current experiments deliver valued evidence about the defensive response apportioned by Na.Cr which might be due to decline in oxidative stress, AChE level, and GABAergic modulation. These activities may contribute to fundamental pharmacology and elucidate some mechanisms behind the activities of Nyctanthes arbor-tristis.


Asunto(s)
Anticonvulsivantes , Electroencefalografía , Excitación Neurológica , Pentilenotetrazol , Extractos Vegetales , Convulsiones , Animales , Excitación Neurológica/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Masculino , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación por Computador , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico
4.
Neurol Res ; 46(8): 717-726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679045

RESUMEN

Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Excitación Neurológica , Piroxicam , Ratas Wistar , Animales , Piroxicam/farmacología , Masculino , Excitación Neurológica/efectos de los fármacos , Anticonvulsivantes/farmacología , Ratas , Pentilenotetrazol , Convulsiones/tratamiento farmacológico , Citocinas/metabolismo , Diazepam/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Relación Dosis-Respuesta a Droga , Epilepsia/tratamiento farmacológico
5.
Iran Biomed J ; 28(2&3): 113-9, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562043

RESUMEN

Background: Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI. Methods: Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1ß and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis. Results: Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1ß and GFAP induced by TBI. Conclusion: Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1ß and GFAP seems to be involved in this activity.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Curcumina , Epilepsia , Proteína Ácida Fibrilar de la Glía , Hipocampo , Interleucina-1beta , Excitación Neurológica , Curcumina/farmacología , Curcumina/uso terapéutico , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Interleucina-1beta/metabolismo , Masculino , Epilepsia/tratamiento farmacológico , Proteína Ácida Fibrilar de la Glía/metabolismo , Excitación Neurológica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Ratas Sprague-Dawley , Convulsiones/tratamiento farmacológico
6.
Brain ; 147(6): 2169-2184, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38662500

RESUMEN

Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-ß pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.


Asunto(s)
Enfermedad de Alzheimer , Ratones Transgénicos , Convulsiones , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Ratones , Masculino , Humanos , Femenino , Pentilenotetrazol/toxicidad , Anciano , Modelos Animales de Enfermedad , Excitación Neurológica/efectos de los fármacos , Anciano de 80 o más Años
7.
Neurochem Int ; 176: 105725, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561151

RESUMEN

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Asunto(s)
Anticonvulsivantes , Encéfalo , Deferasirox , Epilepsia , Quelantes del Hierro , Hierro , Proteínas de la Membrana , Animales , Masculino , Ratones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Deferasirox/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Hierro/metabolismo , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Excitación Neurológica/efectos de los fármacos , Pentilenotetrazol/toxicidad , Ratas Sprague-Dawley , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo
8.
Epilepsy Behav ; 155: 109800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657485

RESUMEN

Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1ß concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1ß concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1ß concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1ß cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.


Asunto(s)
Citocinas , Modelos Animales de Enfermedad , Epilepsia , Microbioma Gastrointestinal , Excitación Neurológica , Prednisolona , Ratas Wistar , Animales , Prednisolona/farmacología , Prednisolona/uso terapéutico , Masculino , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Excitación Neurológica/efectos de los fármacos , Ratas , Epilepsia/tratamiento farmacológico , Epilepsia/microbiología , Antiinflamatorios/farmacología
9.
Pharmacol Biochem Behav ; 239: 173755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527654

RESUMEN

INTRODUCTION: One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS: Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS: Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION: PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.


Asunto(s)
Glutamato Descarboxilasa , Hipocampo , Interneuronas , Excitación Neurológica , Pentilenotetrazol , Somatostatina , Animales , Masculino , Glutamato Descarboxilasa/metabolismo , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/metabolismo , Ratas , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Interneuronas/metabolismo , Somatostatina/metabolismo , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/metabolismo
10.
Biomed Pharmacother ; 173: 116385, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460369

RESUMEN

Lilii Bulbus (Lilium lancifolium Thunberg) has a proneurogenic effect on the hippocampus. However, its effects on epilepsy and associated pathological features remain unknown. In this study, we investigated the antiseizure effects of a water extract of Lilii Bulbus (WELB) in mouse model of pentylenetetrazol (PTZ)-induced seizure. Mice were injected with PTZ once every 48 h until full kindling was achieved. WELB (100 and 500 mg/kg) was orally administered once daily before PTZ administration and during the kindling process. We found that WELB treatment protected against PTZ-induced low seizure thresholds and high seizure severity. Further, WELB-treated mice showed attenuated PTZ kindling-induced anxiety and memory impairment. Immunostaining and immunoblots showed that hyperactivation and ectopic migration of dentate granule cells (DGCs) were significantly reduced by WELB treatment in PTZ kindling-induced seizure mice. Staining for mossy fiber sprouting (MFS) using Timm staining and ZnT3 showed that WELB treatment significantly decreased PTZ kindling-induced MFS. Furthermore, the increased or decreased expression of proteins related to ectopic DGCs (Reelin and Dab-1), MFS (Netrin-1, Sema3A, and Sema3F), and their downstream effectors (ERK, AKT, and CREB) in the hippocampus of PTZ kindling mice was significantly restored by WELB treatment. Overall, our findings suggest that WELB is a potential antiseizure drug that acts by reducing ectopic DGCs and MFS and modulating epileptogenesis-related signaling in the hippocampus.


Asunto(s)
Excitación Neurológica , Semaforinas , Animales , Ratones , Netrina-1 , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
11.
Physiol Behav ; 278: 114521, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492911

RESUMEN

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 µM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.


Asunto(s)
Acuaporina 4 , Disfunción Cognitiva , Excitación Neurológica , Niacinamida , Tiadiazoles , Animales , Ratas , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Niacinamida/administración & dosificación , Niacinamida/análogos & derivados , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/complicaciones , Convulsiones/tratamiento farmacológico , Tiadiazoles/administración & dosificación , Agua/efectos adversos , Acuaporina 4/antagonistas & inhibidores
12.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519733

RESUMEN

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Asunto(s)
Aminoácidos , Excitación Neurológica , Ratas , Masculino , Animales , Aminoácidos/farmacología , Pentilenotetrazol/farmacología , Ácido Valproico/farmacología , Ácido Quinurénico/metabolismo , Ratas Wistar , Encéfalo/metabolismo , Excitación Neurológica/metabolismo , Aminas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
13.
Brain Res ; 1829: 148792, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325559

RESUMEN

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Asunto(s)
Epilepsia Refleja , Epilepsia del Lóbulo Temporal , Excitación Neurológica , Ratas , Animales , Glutaminasa/metabolismo , Hipocampo/metabolismo , Epilepsia Refleja/metabolismo , Excitación Neurológica/fisiología , Epilepsia del Lóbulo Temporal/metabolismo , Predisposición Genética a la Enfermedad , Ácido Glutámico/metabolismo , Convulsiones/metabolismo , Estimulación Acústica
14.
Mol Neurobiol ; 61(8): 5601-5613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38214837

RESUMEN

Although numerous studies have acknowledged disparities in epilepsy-related disease processes between young and aged animals, little is known about how epilepsy changes from young adulthood to middle age. This study investigates the impact of aging on 6-Hz corneal kindling in young-adult mice and middle-aged mice. We found that the kindling acquisition of the 6-Hz corneal kindling model was delayed in middle-aged mice when compared to young-adult mice. While the seizure stage and incidence of generalized seizures (GS) were similar between the two age groups, the duration of GS in the kindled middle-aged mice was shorter than that in the kindled young-adult mice. Besides, all kindled mice, regardless of age, were resistant to phenytoin sodium (PHT), valproate sodium (VPA), and lamotrigine (LGT), whereas middle-aged mice exhibited higher levetiracetam (LEV) resistance compared to young-adult mice. Both age groups of kindled mice displayed hyperactivity and impaired memory, which are common behavioral characteristics associated with epilepsy. Furthermore, middle-aged mice displayed more pronounced astrogliosis in the hippocampus. Additionally, the expression of Brain-Derived Neurotrophic Factor (BDNF) was lower in middle-aged mice than in young-adult mice prior to kindling. These data demonstrate that both the acquisition and expression of 6-Hz corneal kindling are attenuated in middle-aged mice, while hippocampal astrogliosis and pharmacological resistance are more pronounced in this age group. These results underscore the importance of considering age-related factors when utilizing the 6-Hz corneal kindling model in mice of varying age groups.


Asunto(s)
Envejecimiento , Factor Neurotrófico Derivado del Encéfalo , Córnea , Modelos Animales de Enfermedad , Hipocampo , Excitación Neurológica , Animales , Excitación Neurológica/fisiología , Excitación Neurológica/efectos de los fármacos , Masculino , Córnea/patología , Córnea/fisiopatología , Envejecimiento/fisiología , Ratones , Hipocampo/fisiopatología , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Convulsiones/fisiopatología , Ratones Endogámicos C57BL , Gliosis/patología , Gliosis/fisiopatología
15.
Neurosci Bull ; 40(5): 564-576, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244139

RESUMEN

Secondary epileptogenesis is characterized by increased epileptic susceptibility and a tendency to generate epileptiform activities outside the primary focus. It is one of the major resultants of pharmacoresistance and failure of surgical outcomes in epilepsy, but still lacks effective treatments. Here, we aimed to test the effects of low-frequency stimulation (LFS) at the subiculum for secondary epileptogenesis in a mouse model. Here, secondary epileptogenesis was simulated at regions both contralateral and ipsilateral to the primary focus by applying successive kindling stimuli. Mice kindled at the right CA3 showed higher seizure susceptibilities at both the contralateral CA3 and the ipsilateral entorhinal cortex and had accelerated kindling processes compared with naive mice. LFS at the ipsilateral subiculum during the primary kindling progress at the right CA3 effectively prevented secondary epileptogenesis at both the contralateral CA3 and the ipsilateral entorhinal cortex, characterized by decreased seizure susceptibilities and a retarded kindling process at those secondary foci. Only application along with the primary epileptogenesis was effective. Notably, the effects of LFS on secondary epileptogenesis were associated with its inhibitory effect at the secondary focus through interfering with the enhancement of synaptic connections between the primary and secondary foci. These results imply that LFS at the subiculum is an effective preventive strategy for extensive secondary epileptogenesis in temporal lobe epilepsy and present the subiculum as a target with potential translational importance.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Excitación Neurológica , Animales , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/terapia , Excitación Neurológica/fisiología , Masculino , Hipocampo/fisiopatología , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Estimulación Eléctrica/métodos , Corteza Entorrinal/fisiopatología , Convulsiones/etiología , Convulsiones/fisiopatología , Convulsiones/prevención & control , Terapia por Estimulación Eléctrica/métodos
16.
Brain Res ; 1822: 148620, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37848119

RESUMEN

Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.


Asunto(s)
Excitación Neurológica , Proteómica , Ratas , Animales , Proteómica/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ciclooxigenasa 2/metabolismo , Excitación Neurológica/metabolismo , Hipocampo/metabolismo
17.
Biomed Pharmacother ; 170: 115935, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101280

RESUMEN

Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.


Asunto(s)
Epilepsia , Excitación Neurológica , Humanos , Ratones , Animales , Pentilenotetrazol/farmacología , Pregabalina/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Estrés Oxidativo , Anticonvulsivantes/efectos adversos
18.
Epilepsia ; 65(3): 600-614, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38115808

RESUMEN

Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.


Asunto(s)
Epilepsia , Excitación Neurológica , Animales , Humanos , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Convulsiones , Encéfalo
19.
Epilepsy Res ; 198: 107246, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925976

RESUMEN

This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.


Asunto(s)
Epilepsia Refractaria , Excitación Neurológica , Ratones , Animales , Clotrimazol/farmacología , Clotrimazol/uso terapéutico , Rotenona/farmacología , Rotenona/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Epilepsia Refractaria/tratamiento farmacológico
20.
Epilepsy Res ; 197: 107234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37793283

RESUMEN

Ghrelin is a peptide, which has been shown to affect seizures. However, there is not a consensus about its real impact on the control of seizure severity. We assessed the influence of intra-amygdala injections of a ghrelin receptor (GHSR) antagonist, as well as a GHSR inverse agonist on the electrical kindling-induced seizures. Two unipolar electrodes and a tripolar electrode twisted with a guide cannula were implanted in the skull surface or the basolateral amygdala of adult male rats, respectively. A rapid electrical kindling protocol was applied for kindling epileptogenesis. The stimulations were applied until rats showed three consecutive stage five seizures. Each rat was considered as its control. D-Lys-3-GHRP-6 (1, 12.5, and 25 µg/rat) or [D-Arg, D-phe, D-Trp, heu] substance P (D-SP) (50, 500 and 5000 ng/rat) as the GHSR antagonist or inverse agonist were injected into the basolateral amygdala. Seizure parameters including after-discharge duration (ADD), stage five duration (S5D), and seizure stage (SS) were documented thirty minutes following administration of the drugs or saline. Antagonism of the GHSR in the amygdala, significantly increased seizure induction in the kindled rats, in a dose-dependent manner, and induced spontaneous seizures leading to status epilepticus. Conversely, D-SP had a dose-dependent anticonvulsant activity, indicated by decreased ADD and S5D. The results show that GHSR inverse agonism suppressed seizure severity in the rat amygdala kindling model, whereas GHSR antagonism made seizures more severe. Therefore, when considering the ghrelin system to modulate seizures, it is crucial to note the differential impact of various GHSR ligands.


Asunto(s)
Epilepsia , Excitación Neurológica , Ratas , Masculino , Animales , Agonismo Inverso de Drogas , Receptores de Ghrelina , Ghrelina/farmacología , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA