Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.370
Filtrar
1.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771357

RESUMEN

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Trastornos del Neurodesarrollo , Linaje , Proteínas de Transporte Vesicular , Humanos , Trastornos del Neurodesarrollo/genética , Masculino , Femenino , Proteínas de Transporte Vesicular/genética , Estudios de Asociación Genética/métodos , Niño , Preescolar , Exoma/genética , Pakistán , Predisposición Genética a la Enfermedad , Mutación , Moléculas de Adhesión Celular Neuronal/genética
3.
Orphanet J Rare Dis ; 19(1): 216, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790019

RESUMEN

BACKGROUND: Though next-generation sequencing (NGS) tests like exome sequencing (ES), genome sequencing (GS), and panels derived from exome and genome data (EGBP) are effective for rare diseases, the ideal diagnostic approach is debated. Limited research has explored reanalyzing raw ES and GS data post-negative EGBP results for diagnostics. RESULTS: We analyzed complete ES/GS raw sequencing data from Mayo Clinic's Program for Rare and Undiagnosed Diseases (PRaUD) patients to assess whether supplementary findings could augment diagnostic yield. ES data from 80 patients (59 adults) and GS data from 20 patients (10 adults), averaging 43 years in age, were analyzed. Most patients had renal (n=44) and auto-inflammatory (n=29) phenotypes. Ninety-six cases had negative findings and in four cases additional genetic variants were found, including a variant related to a recently described disease (RRAGD-related hypomagnesemia), a variant missed due to discordant inheritance pattern (COL4A3), a variant with high allelic frequency (NPHS2) in the general population, and a variant associated with an initially untargeted phenotype (HNF1A). CONCLUSION: ES and GS show diagnostic yields comparable to EGBP for single-system diseases. However, EGBP's limitations in detecting new disease-associated genes underscore the necessity for periodic updates.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Adulto , Femenino , Masculino , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación del Exoma/métodos , Exoma/genética , Adulto Joven , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Anciano , Adolescente , Secuenciación Completa del Genoma/métodos
4.
Genes (Basel) ; 15(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38790214

RESUMEN

Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants.


Asunto(s)
Frecuencia de los Genes , Polimorfismo de Nucleótido Simple , Humanos , España , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma , Masculino , Femenino , Genética de Población , Variación Genética , Genoma Humano , Exoma/genética , Estudios de Cohortes
5.
Nat Commun ; 15(1): 4010, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750076

RESUMEN

The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.


Asunto(s)
Bancos de Muestras Biológicas , Exoma , Neoplasias , Proteómica , Humanos , Reino Unido/epidemiología , Neoplasias/genética , Neoplasias/sangre , Neoplasias/epidemiología , Factores de Riesgo , Masculino , Femenino , Exoma/genética , Estudios Prospectivos , Persona de Mediana Edad , Proteínas Sanguíneas/genética , Anciano , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Incidencia , Biobanco del Reino Unido
6.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716726

RESUMEN

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Asunto(s)
Proteínas del Citoesqueleto , Hipertensión Esencial , Secuenciación del Exoma , Proteínas del Tejido Nervioso , Adolescente , Niño , Femenino , Humanos , Masculino , Edad de Inicio , Proteínas del Citoesqueleto/genética , Hipertensión Esencial/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Linaje , Proteína de Unión al GTP rhoA/genética , Estados Unidos/epidemiología , Recién Nacido , Lactante , Preescolar , Adulto Joven
7.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690959

RESUMEN

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Microcefalia , Polimorfismo de Nucleótido Simple , Diagnóstico Prenatal , Esfingomielina Fosfodiesterasa , Humanos , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/métodos , Femenino , Diagnóstico Prenatal/métodos , Esfingomielina Fosfodiesterasa/genética , Polimorfismo de Nucleótido Simple/genética , Embarazo , Microcefalia/genética , Heterocigoto , Artrogriposis/genética , Artrogriposis/diagnóstico , Masculino , Exoma/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico
8.
Nat Med ; 30(5): 1395-1405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693247

RESUMEN

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.


Asunto(s)
Parálisis Cerebral , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Heterogeneidad Genética , Humanos , Parálisis Cerebral/genética , Femenino , Masculino , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Lactante , Pruebas Genéticas , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Recién Nacido
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731892

RESUMEN

With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.


Asunto(s)
Antígenos de Neoplasias , Epítopos , Inmunoterapia , Neoplasias , Humanos , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Inmunoterapia/métodos , Epítopos/inmunología , Epítopos/genética , Exoma/genética , Mutación
10.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38603604

RESUMEN

MOTIVATION: Whole exome sequencing (WES) has emerged as a powerful tool for genetic research, enabling the collection of a tremendous amount of data about human genetic variation. However, properly identifying which variants are causative of a genetic disease remains an important challenge, often due to the number of variants that need to be screened. Expanding the screening to combinations of variants in two or more genes, as would be required under the oligogenic inheritance model, simply blows this problem out of proportion. RESULTS: We present here the High-throughput oligogenic prioritizer (Hop), a novel prioritization method that uses direct oligogenic information at the variant, gene and gene pair level to detect digenic variant combinations in WES data. This method leverages information from a knowledge graph, together with specialized pathogenicity predictions in order to effectively rank variant combinations based on how likely they are to explain the patient's phenotype. The performance of Hop is evaluated in cross-validation on 36 120 synthetic exomes for training and 14 280 additional synthetic exomes for independent testing. Whereas the known pathogenic variant combinations are found in the top 20 in approximately 60% of the cross-validation exomes, 71% are found in the same ranking range when considering the independent set. These results provide a significant improvement over alternative approaches that depend simply on a monogenic assessment of pathogenicity, including early attempts for digenic ranking using monogenic pathogenicity scores. AVAILABILITY AND IMPLEMENTATION: Hop is available at https://github.com/oligogenic/HOP.


Asunto(s)
Exoma , Humanos , Secuenciación del Exoma/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos
11.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612443

RESUMEN

Acute myeloid leukemia (AML) is a complex hematologic malignancy with high morbidity and mortality. Nucleophosmin 1 (NPM1) mutations occur in approximately 30% of AML cases, and NPM1-mutated AML is classified as a distinct entity. NPM1-mutated AML patients without additional genetic abnormalities have a favorable prognosis. Despite this, 30-50% of them experience relapse. This study aimed to investigate the potential of total RNAseq in improving the characterization of NPM1-mutated AML patients. We explored genetic variations independently of myeloid stratification, revealing a complex molecular scenario. We showed that total RNAseq enables the uncovering of different genetic alterations and clonal subtypes, allowing for a comprehensive evaluation of the real expression of exome transcripts in leukemic clones and the identification of aberrant fusion transcripts. This characterization may enhance understanding and guide improved treatment strategies for NPM1mut AML patients, contributing to better outcomes. Our findings underscore the complexity of NPM1-mutated AML, supporting the incorporation of advanced technologies for precise risk stratification and personalized therapeutic strategies. The study provides a foundation for future investigations into the clinical implications of identified genetic variations and highlights the importance of evolving diagnostic approaches in leukemia management.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Células Clonales , Exoma , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética
12.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627676

RESUMEN

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Asunto(s)
Exoma , Inactivación del Cromosoma X , Adulto , Humanos , Femenino , Transcriptoma , Secuenciación del Exoma , Cromosomas Humanos X/genética
13.
Sci Adv ; 10(16): eadi8419, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630824

RESUMEN

We generated Japanese Encyclopedia of Whole-Genome/Exome Sequencing Library (JEWEL), a high-depth whole-genome sequencing dataset comprising 3256 individuals from across Japan. Analysis of JEWEL revealed genetic characteristics of the Japanese population that were not discernible using microarray data. First, rare variant-based analysis revealed an unprecedented fine-scale genetic structure. Together with population genetics analysis, the present-day Japanese can be decomposed into three ancestral components. Second, we identified unreported loss-of-function (LoF) variants and observed that for specific genes, LoF variants appeared to be restricted to a more limited set of transcripts than would be expected by chance, with PTPRD as a notable example. Third, we identified 44 archaic segments linked to complex traits, including a Denisovan-derived segment at NKX6-1 associated with type 2 diabetes. Most of these segments are specific to East Asians. Fourth, we identified candidate genetic loci under recent natural selection. Overall, our work provided insights into genetic characteristics of the Japanese population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Japón , Selección Genética , Secuenciación Completa del Genoma , Exoma
14.
Nat Commun ; 15(1): 2819, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561338

RESUMEN

Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.


Asunto(s)
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Factores de Riesgo , Factores de Coagulación Sanguínea/genética , Exoma , Estudio de Asociación del Genoma Completo , Factores de Empalme Serina-Arginina/genética , Fosfoproteínas/genética
15.
Genome Med ; 16(1): 64, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671509

RESUMEN

BACKGROUND: Genetic variants that severely alter protein products (e.g. nonsense, frameshift) are often associated with disease. For some genes, these predicted loss-of-function variants (pLoFs) are observed throughout the gene, whilst in others, they occur only at specific locations. We hypothesised that, for genes linked with monogenic diseases that display incomplete penetrance, pLoF variants present in apparently unaffected individuals may be limited to regions where pLoFs are tolerated. To test this, we investigated whether pLoF location could explain instances of incomplete penetrance of variants expected to be pathogenic for Mendelian conditions. METHODS: We used exome sequence data in 454,773 individuals in the UK Biobank (UKB) to investigate the locations of pLoFs in a population cohort. We counted numbers of unique pLoF, missense, and synonymous variants in UKB in each quintile of the coding sequence (CDS) of all protein-coding genes and clustered the variants using Gaussian mixture models. We limited the analyses to genes with ≥ 5 variants of each type (16,473 genes). We compared the locations of pLoFs in UKB with all theoretically possible pLoFs in a transcript, and pathogenic pLoFs from ClinVar, and performed simulations to estimate the false-positive rate of non-uniformly distributed variants. RESULTS: For most genes, all variant classes fell into clusters representing broadly uniform variant distributions, but genes in which haploinsufficiency causes developmental disorders were less likely to have uniform pLoF distribution than other genes (P < 2.2 × 10-6). We identified a number of genes, including ARID1B and GATA6, where pLoF variants in the first quarter of the CDS were rescued by the presence of an alternative translation start site and should not be reported as pathogenic. For other genes, such as ODC1, pLoFs were located approximately uniformly across the gene, but pathogenic pLoFs were clustered only at the end, consistent with a gain-of-function disease mechanism. CONCLUSIONS: Our results suggest the potential benefits of localised constraint metrics and that the location of pLoF variants should be considered when interpreting variants.


Asunto(s)
Mutación con Pérdida de Función , Penetrancia , Humanos , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Exoma , Análisis por Conglomerados , Secuenciación del Exoma
17.
Cell Rep Med ; 5(5): 101518, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38642551

RESUMEN

Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a corresponding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations (15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%] undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic findings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiagnosed carriers are discovered to have disease. These results highlight the potential of population-based genomic screening.


Asunto(s)
Secuenciación del Exoma , Exoma , Humanos , Femenino , Masculino , Exoma/genética , Secuenciación del Exoma/métodos , Persona de Mediana Edad , Adulto , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología , Predisposición Genética a la Enfermedad , Registros Electrónicos de Salud , Pruebas Genéticas/métodos , Genoma Humano , Anciano , Atención a la Salud , Adolescente , Genómica/métodos , Adulto Joven
18.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565148

RESUMEN

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Exoma , Enfermedades Raras , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Exoma/genética , Masculino , Femenino , Estudios de Cohortes , Pruebas Genéticas/métodos
19.
Nat Commun ; 15(1): 2632, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565598

RESUMEN

Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.


Asunto(s)
Lateralidad Funcional , Estudio de Asociación del Genoma Completo , Humanos , Exoma/genética , Encéfalo , Proteínas Represoras/genética , Factores de Transcripción Forkhead/genética
20.
J Mol Diagn ; 26(6): 510-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582400

RESUMEN

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Pruebas Genéticas , Humanos , Secuenciación del Exoma/métodos , India/epidemiología , Masculino , Pruebas Genéticas/métodos , Pruebas Genéticas/economía , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Exoma/genética , Consanguinidad , Niño , Adulto , Adolescente , Preescolar , Fenotipo , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/epidemiología , Lactante , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA