Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.395
Filtrar
1.
Bull Exp Biol Med ; 176(5): 607-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38730105

RESUMEN

The study presents the killer functions of circulating neutrophils: myeloperoxidase activity, the ability to generate ROS, phagocytic activity, receptor status, NETosis, as well as the level of cytokines IL-2, IL-4, IL-6, IL-17A, and IL-18, granulocyte CSF, monocyte chemotactic protein 1, and neutrophil elastase in the serum of patients with uterine myoma and endometrial cancer (FIGO stages I-III). The phagocytic ability of neutrophils in uterine myoma was influenced by serum levels of granulocyte CSF and IL-2 in 54% of the total variance. The degranulation ability of neutrophils in endometrial cancer was determined by circulating IL-18 in 50% of the total variance. In uterine myoma, 66% of the total variance in neutrophil myeloperoxidase activity was explained by a model dependent on blood levels of IL-17A, IL-6, and IL-4. The risk of endometrial cancer increases when elevated levels of monocyte chemotactic protein 1 in circulating neutrophils are associated with reduced ability to capture particles via extracellular traps (96% probability).


Asunto(s)
Quimiocina CCL2 , Neoplasias Endometriales , Interleucina-17 , Interleucina-6 , Neutrófilos , Humanos , Femenino , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/sangre , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Interleucina-6/sangre , Quimiocina CCL2/sangre , Interleucina-17/sangre , Persona de Mediana Edad , Interleucina-4/sangre , Peroxidasa/sangre , Peroxidasa/metabolismo , Interleucina-18/sangre , Neoplasias Uterinas/sangre , Neoplasias Uterinas/inmunología , Neoplasias Uterinas/patología , Factor Estimulante de Colonias de Granulocitos/sangre , Factor Estimulante de Colonias de Granulocitos/metabolismo , Fagocitosis , Leiomioma/sangre , Leiomioma/inmunología , Leiomioma/patología , Leiomioma/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Elastasa de Leucocito/sangre , Elastasa de Leucocito/metabolismo , Adulto , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Especies Reactivas de Oxígeno/metabolismo , Anciano , Interleucina-2
2.
Front Immunol ; 15: 1361596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690266

RESUMEN

Mesenchymal stromal/stem cells (MSCs), which are distributed in many tissues including bone marrow, have been reported to play a critical role in tumor development. While bone marrow, the primary site for hematopoiesis, is important for establishing the immune system, whether MSCs in the bone marrow can promote tumor growth via influencing hematopoiesis remains unclear. We observed that the numbers of MSCs and neutrophils were increased in bone marrow in tumor-bearing mice. Moreover, co-culture assay showed that MSCs strongly protected neutrophils from apoptosis and induced their maturation. G-CSF and GM-CSF have been well-documented to be associated with neutrophil formation. We found a remarkably increased level of G-CSF, but not GM-CSF, in the supernatant of MSCs and the serum of tumor-bearing mice. The G-CSF expression can be enhanced with inflammatory cytokines (IFNγ and TNFα) stimulation. Furthermore, we found that IFNγ and TNFα-treated MSCs enhanced their capability of promoting neutrophil survival and maturation. Our results indicate that MSCs display robustly protective effects on neutrophils to contribute to tumor growth in bone niches.


Asunto(s)
Citocinas , Células Madre Mesenquimatosas , Neutrófilos , Animales , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ratones , Citocinas/metabolismo , Ratones Endogámicos C57BL , Técnicas de Cocultivo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Apoptosis , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/patología
3.
Cytokine ; 179: 156619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669908

RESUMEN

Interleukin (IL)-23 is implicated in the pathogenesis of several inflammatory diseases and is usually linked with helper T cell (Th17) biology. However, there is some data linking IL-23 with innate immune biology in such diseases. We therefore examined the effects of IL-23p19 genetic deletion and/or neutralization on in vitro macrophage activation and in an innate immune-driven peritonitis model. We report that endogenous IL-23 was required for maximal macrophage activation by zymosan as determined by pro-inflammatory cytokine production, including a dramatic upregulation of granulocyte-colony stimulating factor (G-CSF). Furthermore, both IL-23p19 genetic deletion and neutralization in zymosan-induced peritonitis (ZIP) led to a specific reduction in the neutrophil numbers, as well as a reduction in the G-CSF levels in exudate fluids. We conclude that endogenous IL-23 can contribute significantly to macrophage activation during an inflammatory response, mostly likely via an autocrine/paracrine mechanism; of note, endogenous IL-23 can directly up-regulate macrophage G-CSF expression, which in turn is likely to contribute to the regulation of IL-23-dependent neutrophil number and function during an inflammatory response, with potential significance for IL-23 targeting particularly in neutrophil-associated inflammatory diseases.


Asunto(s)
Inflamación , Interleucina-23 , Células Mieloides , Neutrófilos , Zimosan , Animales , Inflamación/metabolismo , Inflamación/inmunología , Interleucina-23/metabolismo , Ratones , Neutrófilos/metabolismo , Neutrófilos/inmunología , Células Mieloides/metabolismo , Peritonitis/metabolismo , Peritonitis/inmunología , Ratones Endogámicos C57BL , Factor Estimulante de Colonias de Granulocitos/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/inmunología , Subunidad p19 de la Interleucina-23/metabolismo , Subunidad p19 de la Interleucina-23/genética , Ratones Noqueados
4.
Int Immunopharmacol ; 133: 112058, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613883

RESUMEN

Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns. Placental PMN-MDSCs are vital regulators of fetal development and neonatal gut inflammation. Placental single-cell transcriptomics revealed that PMN-MDSCs populations and olfactomedin-4 gene (Olfm4) expression levels were significantly increased in PMN-MDSCs in later pregnancy compared to those in early pregnancy and non-pregnant females. Female mice lacking Olfm4 in myeloid cells mated with wild-type males showed FGR during pregnancy, with a decreased placental PMN-MDSCs population and expression of growth-promoting factors (GPFs) from placental PMN-MDSCs. Galectin-3 (Gal-3) stimulated the OLFM4-mediated secretion of GPFs by placental PMN-MDSCs. Moreover, GPF regulation via OLFM4 in placental PMN-MDSCs was mediated via hypoxia inducible factor-1α (HIF-1α). Notably, the offspring of mothers lacking Olfm4 exhibited intestinal inflammation and were susceptible to NEC. Additionally, OLFM4 expression decreased in placental PMN-MDSCs from pregnancies with FGR and was negatively correlated with neonatal morbidity. These results revealed that placental PMN-MDSCs contributed to fetal development and ameliorate newborn intestinal inflammation.


Asunto(s)
Retardo del Crecimiento Fetal , Células Supresoras de Origen Mieloide , Placenta , Animales , Femenino , Embarazo , Humanos , Placenta/inmunología , Placenta/metabolismo , Recién Nacido , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Retardo del Crecimiento Fetal/inmunología , Ratones , Ratones Noqueados , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/genética , Ratones Endogámicos C57BL , Masculino , Galectinas/metabolismo , Galectinas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Intestinos/inmunología , Intestinos/patología
5.
Nature ; 627(8005): 839-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509363

RESUMEN

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones , Envejecimiento/fisiología , Infecciones Bacterianas/patología , Infecciones Bacterianas/fisiopatología , Vasos Sanguíneos/citología , Linaje de la Célula , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemorragia/patología , Hemorragia/fisiopatología , Linfopoyesis , Megacariocitos/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Mielopoyesis , Cráneo/irrigación sanguínea , Cráneo/patología , Cráneo/fisiopatología , Esternón/irrigación sanguínea , Esternón/citología , Esternón/metabolismo , Estrés Fisiológico/fisiología , Tibia/irrigación sanguínea , Tibia/citología , Tibia/metabolismo
6.
Sci Rep ; 14(1): 7292, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538691

RESUMEN

Glioblastoma multiforme (GBM) IDH-wildtype is the most prevalent brain malignancy in adults. However, molecular mechanisms, which leads to GBM have not been completely elucidated. Granulocyte colony-stimulating factor (GCSF), Granulocyte colony-stimulating factor receptor GCSFR, and Signal transducers and activators of transcription 3 (STAT3) have been involved in the occurrence and development of various cancers, but their role in GBM is little known. Herein, we have investigated the gene and protein expression of GCSF, GCSFR, and STAT3 in 21 tissue biopsy samples and also in tumor associated normal tissue (TANT) samples derived from glioblastoma patients, which revealed significantly differential expression of these genes. To validate our findings, we performed a comprehensive integrated analysis of transcriptomic and proteomic profiling of respective genes by retrieving GBM RNA-sequence data from Genome Atlas Databases. GO and KEGG analysis revealed enrichment in disease-related pathways, such as JAK/STAT pathway activation, which were associated with GBM progression. We further performed computational docking analysis of potential drug candidate Nisin against GCSF, and the results were validated in vitro through cytotoxic activity assay using a human glioblastoma cell line SF-767 in a dose-dependent manner. Our comprehensive analysis reveals that GCSF augments glioma progression, and its blockade with anticancer bacteriocin peptide Nisin can potentially inhibit the growth and metastasis of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nisina , Adulto , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Nisina/metabolismo , Quinasas Janus/metabolismo , Proteómica , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Regulación Neoplásica de la Expresión Génica
7.
Environ Int ; 186: 108580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507932

RESUMEN

Desert dust exposure is associated with adverse respiratory health effects. Desert dust is a complex pollutant mixtures that includes respirable crystalline and amorphous particles, metals, and microbial constituents. Given the health effects of desert dust and its heterogeneity, as yet unidentified harmful biological pathways may be triggered. Therefore, we exposed human in vitro air-liquid interface co-cultures of alveolar epithelial A549 cells and THP-1 macrophages to Saharan dust (SD). For comparison, we used the known pulmonary toxicant DQ12 quartz dust. Via RNA sequencing, we identified that SD but not DQ12 increased the gene expression of granulocyte-macrophage colony-stimulating factor (GMCSF) and granulocyte colony-stimulating factor (GCSF). These findings were confirmed by quantitative reverse transcriptase PCR. SD dose-dependently upregulated GMCSF and GCSF expression with significant 7 and 9-fold changes, respectively, at the highest tested concentration of 31 µg/cm2. Furthermore, we observed that SD significantly enhanced the secretion of GM-CSF and G-CSF by 2-fold. Both cytokines have previously been associated with lung diseases such as asthma and fibrosis. Hence, we present two molecular messengers that may contribute to the adverse health effects of desert dust and might serve as drug targets for this globally relevant non-anthropogenic air pollutant.


Asunto(s)
Polvo , Factor Estimulante de Colonias de Granulocitos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Enfermedades Pulmonares , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Enfermedades Pulmonares/inducido químicamente , Células A549 , Células THP-1 , Citocinas/metabolismo
8.
Biochem Biophys Res Commun ; 704: 149661, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417343

RESUMEN

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Vitamina E , Animales , Ratones , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Factor Estimulante de Colonias de Granulocitos/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Primates , Proteínas Recombinantes/farmacología , Vitamina E/análogos & derivados , Vitamina E/uso terapéutico
9.
Cell Rep Med ; 5(2): 101380, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38242120

RESUMEN

Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Neutrófilos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Neoplasias/patología , Antígeno CD52/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289952

RESUMEN

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos del Nervio Óptico , Ratones , Animales , Axones/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/terapia , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
12.
Intern Med ; 63(2): 189-195, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37225486

RESUMEN

Objective Several institutions outsource CD34+ cell counting of leukapheresis products, limiting rapid measurements, as results are obtained the next day. This problem is compounded with plerixafor use, a stem cell-mobilizing drug that increases leukapheresis efficiency but requires administration the day before leukapheresis. Use of this drug for a second leukapheresis procedure before the first-day leukapheresis CD34+ count results are confirmed causes unnecessary leukapheresis and expensive plerixafor administration. We investigated whether or not measuring hematopoietic progenitor cells in leukapheresis products (AP-HPCs) using a Sysmex XN-series analyzer could resolve this problem. Methods We retrospectively compared the absolute AP-HPC value per body weight with the CD34+ (AP-CD34+) count in 96 first-day leukapheresis product samples obtained between September 2013 and January 2021. Comparisons were also conducted according to regimen: granulocyte colony-stimulating factor (G-CSF) monotherapy, chemotherapy plus G-CSF, or plerixafor mobilization. Results AP-CD34+ and AP-HPC counts correlated strongly (rs=0.846) overall and, in particular, under chemotherapy plus G-CSF (rs=0.92) but correlated mildly under G-CSF monotherapy (rs=0.655). AP-HPCs could not completely be dichotomized based on an AP-CD34+ threshold of 2×106/kg for any stimulation procedure. In most cases with AP-HPCs >6×106/kg, the AP-CD34+ count exceeded 2.0×106/kg, but in 5.7% of these cases, the AP-CD34+ count was <2.0×106/kg. A cut-off of AP-HPCs >4.843×106/kg yielded a sensitivity of 71% and specificity of 96% for predicting AP-CD34+≥2×106/kg. Conclusion AP-HPCs can identify cases in which sufficient stem cells have been collected.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Trasplante de Células Madre de Sangre Periférica , Células Madre de Sangre Periférica , Humanos , Leucaféresis , Movilización de Célula Madre Hematopoyética/métodos , Células Madre de Sangre Periférica/metabolismo , Estudios Retrospectivos , Trasplante Autólogo , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo
13.
Appl Biochem Biotechnol ; 196(2): 804-820, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37209276

RESUMEN

Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Polímeros , Animales , Ratas , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/aislamiento & purificación , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Neutrófilos , Polímeros/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
14.
Acta Pharmacol Sin ; 45(1): 98-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37726422

RESUMEN

Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 µg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.


Asunto(s)
Actinas , Neointima , Ratas , Animales , Becaplermina/farmacología , Neointima/tratamiento farmacológico , Neointima/metabolismo , Actinas/metabolismo , Ratas Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Músculo Liso Vascular , Simulación del Acoplamiento Molecular , Proliferación Celular , Transducción de Señal , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
15.
J Leukoc Biol ; 115(2): 205-221, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-37824822

RESUMEN

Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Neutrófilos , Neutrófilos/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Citosol/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteómica , Citocinas/metabolismo
16.
Theriogenology ; 216: 93-102, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159389

RESUMEN

Granulocyte colony-stimulating factor (G-CSF), a pleiotropic cytokine, is secreted by the reproductive tract. Furthermore, our previous study indicated that human recombinant G-CSF (hrG-CSF) supplementation during porcine oocyte in vitro maturation (IVM) or during embryo in vitro culture (IVC) improved their quality and development potential when using cumulus-oocyte complexes (COCs) with more than three cumulus cell layers (CCL >3). Thus, in this study, we investigate the optimal conditions of hrG-CSF supplementation throughout the in vitro production (IVP: IVM + IVC) system to improve the embryo production efficiency of "poor-quality (CCL ≤3)" oocytes. COCs were classified into two groups according to the number of CCL (>3 and ≤3) and embryonic viability was analyzed after treatment with hrG-CSF during IVC. The mRNA transcription levels of G-CSF in COCs were compared based on their type and the period of IVM. Finally, developmental capacity and quality were evaluated after treatment with hrG-CSF for different periods of IVP. No marked effects on the developmental potential of embryos when using CCL ≤3 type COCs were observed after supplementing hrG-CSF only during IVC. Moreover, the mRNA transcription level of G-CSF increased gradually with IVM culture time and was higher in CCL ≤3 COCs than in >3. Supplementing hrG-CSF only during the IVM period resulted in the best embryo developmental potential, while supplementing hrG-CSF during the IVP period resulted in the best quality embryos, reflected in the increased total cell number and decreased apoptotic nuclei index of blastocysts. These findings indicate that "poor-quality" COCs may have a greater demand for G-CSF than "good-quality", meanwhile hrG-CSF supplementation throughout IVP improves resource utilization efficiency in poor-quality COCs.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Femenino , Humanos , Animales , Porcinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Desarrollo Embrionario , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Células del Cúmulo/metabolismo , Blastocisto , ARN Mensajero/metabolismo , Suplementos Dietéticos , Granulocitos
17.
Stem Cell Res Ther ; 14(1): 300, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864264

RESUMEN

BACKGROUND: Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS: The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS: A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS: sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.


Asunto(s)
Movilización de Célula Madre Hematopoyética , Selectina-P , Masculino , Ratones , Humanos , Animales , Movilización de Célula Madre Hematopoyética/métodos , Selectina-P/genética , Selectina-P/metabolismo , Ratones Endogámicos C57BL , Células Madre Hematopoyéticas/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Proteínas Recombinantes/farmacología
18.
J Leukoc Biol ; 114(5): 443-458, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37490847

RESUMEN

This study tested the hypothesis that recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances polymorphonuclear neutrophils (PMNs) via interleukin (IL)-1ß to improve the prognosis of secondary infection in sepsis. The latter stage of sepsis is prone to induce immunosuppression, resulting in secondary fatal infections. Recombinant GM-CSF has become a way for sepsis-induced immunosuppression due to its immunomodulatory effect. However, the functional impact of GM-CSF on PMNs in sepsis remains obscure. This study aimed to study the role of recombinant GM-CSF on the bactericidal ability of PMNs in septic mice, assessing its effect on the prognosis of secondary pneumonia, and explore the mechanism of recombinant GM-CSF by intervening PMNs in patients with sepsis. The C57BL/6J sepsis mouse model was induced by cecal ligation and puncture. Recombinant murine GM-CSF (rmGM-CSF) was used in vivo when mice developed immunosuppression, which was characterized by abnormal bactericidal function of PMNs in peripheral blood. rmGM-CSF improved the prognosis of secondary pneumonia and reversed the function of PMNs. PMNs isolated by Percoll from septic patients were treated by recombinant human GM-CSF (rhGM-CSF) in vitro. The expression of CD11b, reactive oxygen species, phagocytosis, and neutrophil extracellular trap release in PMNs were enhanced by rhGM-CSF treatments. Whole-transcriptomic sequencing of mouse PMNs indicated that recombinant GM-CSF increased the expression of Il1b gene in PMNs. Blocking and inhibiting IL-1ß release effectively counteracted the enhancing effect of GM-CSF on the bactericidal function of PMNs. rmGM-CSF enhances the bactericidal function of PMNs in vivo and improves the prognosis of secondary pneumonia in septic mice, and recombinant GM-CSF increases IL-1ß precursor reserves, which, if stimulated, can rapidly enhance the bactericidal capacity of PMNs.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Sepsis , Humanos , Ratones , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Neutrófilos/metabolismo , Pseudomonas aeruginosa , Factor Estimulante de Colonias de Granulocitos/metabolismo , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Sepsis/tratamiento farmacológico , Pronóstico
19.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37432736

RESUMEN

BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).


Asunto(s)
Suero Antilinfocítico , Diabetes Mellitus Tipo 1 , Humanos , Suero Antilinfocítico/uso terapéutico , Linfocitos T CD4-Positivos/metabolismo , Agotamiento de Células T , Péptido C , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 88-100, 2023 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37283122

RESUMEN

OBJECTIVES: To investigate the mechanism of Xuanhusuo powder (XHSP) inhibiting the differentiation of spleen myeloid-derived suppressor cells (MDSCs) in breast cancer mice. METHODS: Forty-eight BALB/c female mice aged 4-5 weeks were selected, 6 of them were in normal control group, while others were in tumor-bearing models established by orthotopic injection of 4T1 cells into the subcutaneous fat pad of the second pair of left mammary glands. The tumor-bearing mice were divided into granulocyte colony stimulating factor (G-CSF) control group, G-CSF knock-down group, model control group, XHSP small dose group, XHSP medium dose group, XHSP high dose group, and cyclophosphamide (CTX) group, with 6 mice in each group. G-CSF control group and G-CSF knock-down group were constructed by stably transfecting 4T1 cells established by shRNA lentivirus combined with puromycin selection. 48 h after the model was established, XHSP small, medium, high dose group were given 2, 4, 8 g·kg-1·d-1 intragastric administration once a day, respectively. CTX was given 30 mg/kg by intraperitoneal injection, once every other day. The other groups were given an equal volume of 0.5% hydroxymethylcellulose sodium. The drugs in each group were continuously administered for 25 d. Histological changes in spleen were observed by HE staining, the proportion of MDSCs subsets in the spleen were detected by flow cytometry, the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence, and the concentration of G-CSF in peripheral blood was detected by ELISA. The spleen of tumor-bearing mice was co-cultured with 4T1 stably transfected cell lines in vitro, treated with XHSP (30 µg/mL) for 24 h, and the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence. 4T1 cells were treated by XHSP (10, 30, 100 µg/mL) for 12 h. The mRNA level of G-CSF was detected by realtime RT-PCR. RESULTS: Compared with normal mice, the red pulp of the spleen in tumor-bearing mice was widened with megakaryocyte infiltration. The proportion of spleen polymorphonucleocyte-like MDSCs (PMN-MDSCs) was significantly increased (P<0.01) and the co-expression of CD11b and Ly6G was increased, and the concentration of G-CSF in peripheral blood was significantly increased (P<0.01). However, XHSP could significantly reduce the proportion of PMN-MDSCs (P<0.05) and the co-expression of CD11b and Ly6G in the spleen, down-regulate the mRNA level of G-CSF in 4T1 cells (P<0.01). The concentration of G-CSF in peripheral blood of tumor-bearing mice also decreased (P<0.05) and tumor volume was reduced and splenomegaly was improved (all P<0.05). CONCLUSIONS: XHSP may play an anti-breast cancer role by down-regulating G-CSF, negatively regulating the differentiation of MDSCs, and reconstruct the spleen myeloid microenvironment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Medicamentos Herbarios Chinos , Animales , Ratones , Medicamentos Herbarios Chinos/administración & dosificación , Bazo/citología , Bazo/efectos de los fármacos , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Antineoplásicos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA