Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Sci Rep ; 14(1): 14253, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902339

RESUMEN

The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.


Asunto(s)
Microscopía por Crioelectrón , Ciclopentanos , Ácido Fusídico , Factor G de Elongación Peptídica , Ribosomas , Staphylococcus aureus , Ácido Fusídico/farmacología , Ácido Fusídico/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Ciclopentanos/farmacología , Ciclopentanos/química , Factor G de Elongación Peptídica/metabolismo , Factor G de Elongación Peptídica/química , Antibacterianos/farmacología , Antibacterianos/química , Modelos Moleculares , ARN de Transferencia/metabolismo , ARN de Transferencia/química
2.
Nucleic Acids Res ; 52(7): 4053-4066, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407413

RESUMEN

During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Listeria monocytogenes , Ribosomas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ribosomas/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Biosíntesis de Proteínas , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Factor G de Elongación Peptídica/metabolismo , Factor G de Elongación Peptídica/química
3.
EMBO J ; 42(2): e112372, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36472247

RESUMEN

Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.


Asunto(s)
Bacteroides , Factor G de Elongación Peptídica , Animales , Ratones , Bacteroides/genética , Bacteroides/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/química , Ribosomas/metabolismo , ARN de Transferencia/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(44): e2212502119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282914

RESUMEN

Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/química , Guanosina Trifosfato/química , Hidrólisis , Ribosomas/metabolismo , ARN de Transferencia/química , ARN Mensajero/química , GTP Fosfohidrolasas/genética , Pirenos/análisis , Guanosina
5.
RNA Biol ; 19(1): 662-677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35485608

RESUMEN

In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , Bacterias/genética , Bacterias/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo
6.
Nat Commun ; 12(1): 7236, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903725

RESUMEN

During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato/química , Factor G de Elongación Peptídica/química , Ribosomas/química , Escherichia coli/química , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Fosfatos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo
7.
Nat Commun ; 12(1): 5933, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635670

RESUMEN

GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP-Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.


Asunto(s)
Escherichia coli/genética , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Ribosómico 23S/química , ARN de Transferencia/química , Ribosomas/metabolismo , Sitios de Unión , Fenómenos Biomecánicos , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Modelos Moleculares , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/ultraestructura , Termodinámica
8.
Biochemistry (Mosc) ; 86(8): 992-1002, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488575

RESUMEN

During protein synthesis, ribosome moves along mRNA to decode one codon after the other. Ribosome translocation is induced by a universally conserved protein, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. EF-G-induced translocation results in unwinding of the intramolecular secondary structures of mRNA by three base pairs at a time that renders the translating ribosome a processive helicase. Professor Alexander Sergeevich Spirin has made numerous seminal contributions to understanding the molecular mechanism of translocation. Here, we review Spirin's insights into the ribosomal translocation and recent advances in the field that stemmed from Spirin's pioneering work. We also discuss key remaining challenges in studies of translocase and helicase activities of the ribosome.


Asunto(s)
ARN Helicasas/química , Ribosomas/fisiología , Transferasas/química , Transporte Biológico , Microscopía por Crioelectrón , Eucariontes/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Factor 2 de Elongación Peptídica/química , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/química , Ribosomas/química
9.
Nat Commun ; 12(1): 4644, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330903

RESUMEN

Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Extensión de la Cadena Peptídica de Translación/genética , Factor G de Elongación Peptídica/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Ribosomas/genética , Biocatálisis , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
10.
Nat Commun ; 12(1): 3607, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127662

RESUMEN

Ribosomes are recycled for a new round of translation initiation by dissociation of ribosomal subunits, messenger RNA and transfer RNA from their translational post-termination complex. Here we present cryo-EM structures of the human 55S mitochondrial ribosome (mitoribosome) and the mitoribosomal large 39S subunit in complex with mitoribosome recycling factor (RRFmt) and a recycling-specific homolog of elongation factor G (EF-G2mt). These structures clarify an unusual role of a mitochondria-specific segment of RRFmt, identify the structural distinctions that confer functional specificity to EF-G2mt, and show that the deacylated tRNA remains with the dissociated 39S subunit, suggesting a distinct sequence of events in mitoribosome recycling. Furthermore, biochemical and structural analyses reveal that the molecular mechanism of antibiotic fusidic acid resistance for EF-G2mt is markedly different from that of mitochondrial elongation factor EF-G1mt, suggesting that the two human EF-Gmts have evolved diversely to negate the effect of a bacterial antibiotic.


Asunto(s)
Farmacorresistencia Microbiana/genética , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Humanos , Mitocondrias , Ribosomas Mitocondriales/efectos de los fármacos , Modelos Moleculares , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética
11.
RNA ; 27(1): 40-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008838

RESUMEN

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico , Mutación , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/genética , Ribosomas/genética , Anticodón/química , Anticodón/metabolismo , Sitios de Unión , Codón/química , Codón/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero , ARN de Transferencia , Sistemas de Lectura , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
12.
Sci Rep ; 10(1): 19636, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184330

RESUMEN

Reducing macrophage recruitment by silencing chemokine (C-C motif) receptor 2 (CCR2) expression is a promising therapeutic approach against atherosclerosis. However the transfection of macrophages with siRNA is often technically challenging. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) (PLGA) nanoparticles (ENPs) have a specific affinity to tissue factor (TF). In this study, the feasibility of ENPs as a carrier for target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages was investigated. Coumarin-6 loaded ENPs were synthesized using a double-emulsion method. Fluorescence microscopy and flow cytometry assay were taken to examine the uptake of Coumarin-6 loaded ENPs in the cellular model. Then a sequence of shRNA specific to CCR2 mRNA was constructed and encapsulated into ENPs. Target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages in vitro were evaluated. Results showed more uptake of ENPs by the cellular model than common PLGA nanoparticles. CCR2-shRNA loaded ENPs effectively silenced CCR2 gene in the atherosclerotic macrophages and exhibited a favorable cytotoxic profile to cultured cells. With their low cytotoxicity and efficient drug delivery, ENP could be a useful carrier for target delivery of CCR2-shRNA to inflammatory monocytes/macrophages for the therapy against atherosclerosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Macrófagos/efectos de los fármacos , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , ARN Interferente Pequeño/farmacología , Receptores CCR2/antagonistas & inhibidores , Animales , Aterosclerosis/metabolismo , Materiales Biocompatibles/química , Línea Celular , Portadores de Fármacos/administración & dosificación , Proteínas Fluorescentes Verdes/química , Macrófagos/metabolismo , Ratones , Nanopartículas/química , Factor G de Elongación Peptídica/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Receptores CCR2/genética , Proteínas Recombinantes de Fusión/química , Transfección
13.
Proc Natl Acad Sci U S A ; 117(41): 25523-25531, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32999060

RESUMEN

Antibiotic resistance in clinically important bacteria can be mediated by target protection mechanisms, whereby a protein binds to the drug target and protects it from the inhibitory effects of the antibiotic. The most prevalent source of clinical resistance to the antibiotic fusidic acid (FA) is expression of the FusB family of proteins that bind to the drug target (Elongation factor G [EF-G]) and promote dissociation of EF-G from FA-stalled ribosome complexes. FusB binding causes changes in both the structure and conformational flexibility of EF-G, but which of these changes drives FA resistance was not understood. We present here detailed characterization of changes in the conformational flexibility of EF-G in response to FusB binding and show that these changes are responsible for conferring FA resistance. Binding of FusB to EF-G causes a significant change in the dynamics of domain III of EF-GC3 that leads to an increase in a minor, more disordered state of EF-G domain III. This is sufficient to overcome the steric block of transmission of conformational changes within EF-G by which FA prevents release of EF-G from the ribosome. This study has identified an antibiotic resistance mechanism mediated by allosteric effects on the dynamics of the drug target.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas , Farmacorresistencia Bacteriana/fisiología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Conformación Proteica , Dominios Proteicos
14.
Nat Commun ; 11(1): 5096, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037221

RESUMEN

Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein.


Asunto(s)
Factor G de Elongación Peptídica/biosíntesis , Factor G de Elongación Peptídica/química , Pliegue de Proteína , Luminiscencia , Factor G de Elongación Peptídica/genética , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Imagen Individual de Molécula
15.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737313

RESUMEN

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/química , ARN Mitocondrial/química , ARN de Transferencia/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
EMBO J ; 39(15): e104820, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32602580

RESUMEN

Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Microscopía por Crioelectrón , Humanos , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Porcinos
17.
Nat Struct Mol Biol ; 27(1): 25-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873307

RESUMEN

The bacterial ribosome is recycled into subunits by two conserved proteins, elongation factor G (EF-G) and the ribosome recycling factor (RRF). The molecular basis for ribosome recycling by RRF and EF-G remains unclear. Here, we report the crystal structure of a posttermination Thermus thermophilus 70S ribosome complexed with EF-G, RRF and two transfer RNAs at a resolution of 3.5 Å. The deacylated tRNA in the peptidyl (P) site moves into a previously unsuspected state of binding (peptidyl/recycling, p/R) that is analogous to that seen during initiation. The terminal end of the p/R-tRNA forms nonfavorable contacts with the 50S subunit while RRF wedges next to central inter-subunit bridges, illuminating the active roles of tRNA and RRF in dissociation of ribosomal subunits. The structure uncovers a missing snapshot of tRNA as it transits between the P and exit (E) sites, providing insights into the mechanisms of ribosome recycling and tRNA translocation.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Modelos Moleculares , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Conformación Proteica , ARN de Transferencia/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Ribosomas/química , Thermus thermophilus/química
18.
Proc Natl Acad Sci U S A ; 116(51): 25641-25648, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776255

RESUMEN

Large proteins with multiple domains are thought to fold cotranslationally to minimize interdomain misfolding. Once folded, domains interact with each other through the formation of extensive interfaces that are important for protein stability and function. However, multidomain protein folding and the energetics of domain interactions remain poorly understood. In elongation factor G (EF-G), a highly conserved protein composed of 5 domains, the 2 N-terminal domains form a stably structured unit cotranslationally. Using single-molecule optical tweezers, we have defined the steps leading to fully folded EF-G. We find that the central domain III of EF-G is highly dynamic and does not fold upon emerging from the ribosome. Surprisingly, a large interface with the N-terminal domains does not contribute to the stability of domain III. Instead, it requires interactions with its folded C-terminal neighbors to be stably structured. Because of the directionality of protein synthesis, this energetic dependency of domain III on its C-terminal neighbors disrupts cotranslational folding and imposes a posttranslational mechanism on the folding of the C-terminal part of EF-G. As a consequence, unfolded domains accumulate during synthesis, leading to the extensive population of misfolded species that interfere with productive folding. Domain III flexibility enables large-scale conformational transitions that are part of the EF-G functional cycle during ribosome translocation. Our results suggest that energetic tuning of domain stabilities, which is likely crucial for EF-G function, complicates the folding of this large multidomain protein.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Dominios Proteicos/fisiología , Pliegue de Proteína , Proteínas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Pinzas Ópticas , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Proteínas/química , Proteínas/metabolismo , Ribosomas , Imagen Individual de Molécula , Termodinámica
19.
Chembiochem ; 20(23): 2927-2935, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31194278

RESUMEN

During ribosome translocation, the elongation factor EF-G undergoes large conformational change while maintaining its contact with the moving tRNA. We previously measured a power stroke accompanying EF-G catalysis, which was consistent with structural studies. However, the role of power stroke in translocation fidelity remains unclear. Here, we report quantitative measurements of the power strokes of structurally modified EF-Gs by using two different techniques and reveal the correlation between power stroke and translocation efficiency and fidelity. We discovered that the reduced power stroke only lowered the percentage of translocation but did not introduce translocation error. The established force -structure-function correlation for EF-G indicates that power stroke drives ribosomal translocation, but the mRNA reading frame is probably maintained by ribosome itself. Furthermore, the microscope detection method reported here can be simply implemented for other biochemical applications.


Asunto(s)
Factor G de Elongación Peptídica/química , ARN Mensajero/química , Ribosomas/química , Secuencia de Bases , ADN/química , Escherichia coli/química , Ácido Fusídico/química , Microscopía , Biosíntesis de Proteínas , ARN de Transferencia/química
20.
Proteins ; 87(8): 699-705, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30958578

RESUMEN

InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Factor G de Elongación Peptídica/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Biosíntesis de Proteínas , Conformación Proteica , Dominios Proteicos , Ribosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA