Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.007
Filtrar
1.
Nat Commun ; 15(1): 4493, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802342

RESUMEN

Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Oryza , Latencia en las Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Latencia en las Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Amilosa/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Plantas Modificadas Genéticamente
2.
Planta ; 259(6): 136, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679693

RESUMEN

MAIN CONCLUSION: Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.


Asunto(s)
Factor de Unión a CCAAT , Eleusine , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Eleusine/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Deshidratación/genética , Sequías , Estrés Salino/genética , Filogenia , Estrés Fisiológico/genética , Genotipo , Tolerancia a la Sal/genética , Genes de Plantas/genética
3.
Chembiochem ; 25(9): e202400020, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38470946

RESUMEN

Transcription factors (TFs) play a central role in gene regulation, and their malfunction can result in a plethora of severe diseases. TFs are therefore interesting therapeutic targets, but their involvement in protein-protein interaction networks and the frequent lack of well-defined binding pockets render them challenging targets for classical small molecules. As an alternative, peptide-based scaffolds have proven useful, in particular with an α-helical active conformation. Peptide-based strategies often require extensive structural optimization efforts, which could benefit from a more detailed understanding of the dynamics in inhibitor/protein interactions. In this study, we investigate how truncated stapled α-helical peptides interact with the transcription factor Nuclear Factor-Y (NF-Y). We identified a 13-mer minimal binding core region, for which two crystal structures with an altered C-terminal peptide conformation when bound to NF-Y were obtained. Subsequent molecular dynamics simulations confirmed that the C-terminal part of the stapled peptide is indeed relatively flexible while still showing defined interactions with NF-Y. Our findings highlight the importance of flexibility in the bound state of peptides, which can contribute to overall binding affinity.


Asunto(s)
Factor de Unión a CCAAT , Simulación de Dinámica Molecular , Péptidos , Unión Proteica , Péptidos/química , Péptidos/metabolismo , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/química , Sitios de Unión , Humanos , Cristalografía por Rayos X , Secuencia de Aminoácidos
4.
Front Immunol ; 15: 1368685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510250

RESUMEN

Background: Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods: We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results: Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion: These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Fosforilación Oxidativa , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factor de Unión a CCAAT/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474276

RESUMEN

Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Sequías , Filogenia , Genoma de Planta , Factor de Unión a CCAAT/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
6.
Sci Rep ; 14(1): 5257, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438470

RESUMEN

Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.


Asunto(s)
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Factor de Unión a CCAAT/genética
7.
Cell Death Dis ; 15(3): 206, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467619

RESUMEN

Antisense RNAs (asRNAs) represent an underappreciated yet crucial layer of gene expression regulation. Generally thought to modulate their sense genes in cis through sequence complementarity or their act of transcription, asRNAs can also regulate different molecular targets in trans, in the nucleus or in the cytoplasm. Here, we performed an in-depth molecular characterization of NFYC Antisense 1 (NFYC-AS1), the asRNA transcribed head-to-head to NFYC subunit of the proliferation-associated NF-Y transcription factor. Our results show that NFYC-AS1 is a prevalently nuclear asRNA peaking early in the cell cycle. Comparative genomics suggests a narrow phylogenetic distribution, with a probable origin in the common ancestor of mammalian lineages. NFYC-AS1 is overexpressed pancancer, preferentially in association with RB1 mutations. Knockdown of NFYC-AS1 by antisense oligonucleotides impairs cell growth in lung squamous cell carcinoma and small cell lung cancer cells, a phenotype recapitulated by CRISPR/Cas9-deletion of its transcription start site. Surprisingly, expression of the sense gene is affected only when endogenous transcription of NFYC-AS1 is manipulated. This suggests that regulation of cell proliferation is at least in part independent of the in cis transcription-mediated effect on NFYC and is possibly exerted by RNA-dependent in trans effects converging on the regulation of G2/M cell cycle phase genes. Accordingly, NFYC-AS1-depleted cells are stuck in mitosis, indicating defects in mitotic progression. Overall, NFYC-AS1 emerged as a cell cycle-regulating asRNA with dual action, holding therapeutic potential in different cancer types, including the very aggressive RB1-mutated tumors.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Animales , Humanos , Filogenia , Regulación Neoplásica de la Expresión Génica , ARN sin Sentido/genética , Ciclo Celular/genética , Proliferación Celular/genética , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular , Mamíferos/genética , Factor de Unión a CCAAT/genética
8.
Mitochondrion ; 76: 101875, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499131

RESUMEN

Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.


Asunto(s)
Eliminación de Gen , Hierro , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Hierro/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Proteínas Asociadas a Pancreatitis/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo , Viabilidad Microbiana , Factor de Unión a CCAAT , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
9.
Cell Rep ; 43(3): 113825, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38386555

RESUMEN

Jasmonate (JA) is a well-known phytohormone essential for plant response to biotic stress. Recently, a crucial role of JA signaling in salt resistance has been highlighted; however, the specific regulatory mechanism remains largely unknown. In this study, we found that the NUCLEAR FACTOR-Y (NF-Y) subunits NF-YA1, NF-YB2, and NF-YC9 form a trimeric complex that positively regulates the expression of salinity-responsive genes, whereas JASMONATE-ZIM DOMAIN protein 8 (JAZ8) directly interacts with three subunits and acts as the key repressor to suppress both the assembly of the NF-YA1-YB2-YC9 trimeric complex and the transcriptional activation activity of the complex. When plants encounter high salinity, JA levels are elevated and perceived by the CORONATINE INSENSITIVE (COI) 1 receptor, leading to the degradation of JAZ8 via the 26S proteasome pathway, thereby releasing the activity of the NF-YA1-YB2-YC9 complex, initiating the activation of salinity-responsive genes, such as MYB75, and thus enhancing the salinity tolerance of plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309445

RESUMEN

NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.


Asunto(s)
Factor de Unión a CCAAT , Neoplasias , Humanos , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Factores de Transcripción/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Regulación de la Expresión Génica
11.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330080

RESUMEN

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Reoviridae , Tenuivirus , Proteínas Virales , Oryza/virología , Oryza/inmunología , Oryza/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Tenuivirus/fisiología , Tenuivirus/patogenicidad , Virus de Plantas/fisiología , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Resistencia a la Enfermedad/genética
12.
J Biol Chem ; 300(2): 105629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199563

RESUMEN

In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.


Asunto(s)
Factor de Unión a CCAAT , Corteza Cerebral , Animales , Ratones , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Neurogénesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo
14.
Cell Rep ; 42(12): 113582, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096055

RESUMEN

Nervous system function relies on the establishment of complex gene expression programs that provide neuron-type-specific and core pan-neuronal features. These complementary regulatory paradigms are controlled by terminal selector and parallel-acting transcription factors (TFs), respectively. Here, we identify the nuclear factor Y (NF-Y) TF as a pervasive direct and indirect regulator of both neuron-type-specific and pan-neuronal gene expression. Mapping global NF-Y targets reveals direct binding to the cis-regulatory regions of pan-neuronal genes and terminal selector TFs. We show that NFYA-1 controls pan-neuronal gene expression directly through binding to CCAAT boxes in target gene promoters and indirectly by regulating the expression of terminal selector TFs. Further, we find that NFYA-1 regulation of neuronal gene expression is important for neuronal activity and motor function. Thus, our research sheds light on how global neuronal gene expression programs are buffered through direct and indirect regulatory mechanisms.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Neuronas/metabolismo , Expresión Génica
15.
Plant Physiol Biochem ; 204: 108143, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37913748

RESUMEN

The complex of Nuclear Factor Ys (NF-Ys), a family of heterotrimeric transcription factors composed of three unique subunits (NF-YA, NF-YB, and NF-YC), binds to the CCAAT box of eukaryotic promoters to activate or repress transcription of the downstream genes involved into various biological processes in plants. However, the systematic characterization of NF-Y gene family has not been elucidated in Phalaenopsis. A total of 24 NF-Y subunits (4 NF-YA, 9 NF-YB, and 11 NF-YC subunits) were identified in Phalaenopsis genome, whose exon/intron structures were highly differentiated among the PhNF-Y subunits. The distribution of motifs between coding regions of PhNF-YA and PhNF-YB/C was distinct. Segmental and tandem duplication events among paralogous PhNF-Ys were occurred. Six pairs of orthologous NF-Ys from Phalaenopsis and Arabidopsis and five pairs of orthologous NF-Ys from Phalaenopsis and rice involved in the phylogenetic gene synteny were identified. The various cis-elements being responsive to low-temperature, drought and ABA were distributed in the promoters of PhNF-Ys. qRT-PCR analysis indicated all of PhNF-Ys displayed the spatial specificity of expression in different tissues. Moreover, the expression levels of multiple PhNF-Ys significantly changed responding to low-temperature and ABA treatment. Yeast two hybrid and bimolecular fluorescence complementation assays approved the interaction of PhNF-YA1/3 with PhNF-YB6/PhNF-YC7, respectively, as well as PhNF-YB6 with PhNF-YC7. PhNF-YA1/3, PhNF-YB6, and PhNF-YC7 proteins were all localized in the nucleus. Further, transient overexpression of PhNF-YB6 and PhNF-YC7 promoted PhFT3 and repressed PhSVP expression in Phalaenopsis. These findings will facilitate to explore the role of PhNF-Ys in floral transition in Phalaenopsis orchid.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
J Neuropathol Exp Neurol ; 82(11): 911-920, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37742129

RESUMEN

Temozolomide (TMZ) is a commonly used chemotherapeutic agent for glioblastoma (GBM), but acquired drug resistance prevents its therapeutic efficacy. We investigated potential mechanisms underlying TMZ resistance and glycolysis in GBM cells through regulation by nuclear transcription factor Y subunit ß (NFYB) of the oncogene serine hydroxymethyltransferase 2 (SHMT2). GBM U251 cells were transfected with NFYB-, SHMT2-, and the potential NFYB target histone deacetylase 5 (HDAC5)-related vectors. Glucose uptake and lactate production were measured with detection kits. CCK-8/colony formation, scratch, Transwell, and flow cytometry assays were performed to detect cell proliferation, migration, invasion, and apoptosis, respectively. The binding of NFYB to the HDAC5 promoter and the regulation of NFYB on HDAC5 promoter activity were detected with chromatin immunoprecipitation and dual-luciferase reporter assays, respectively. NFYB and HDAC5 were poorly expressed and SHMT2 was expressed at high levels in GBM U251 cells. NFYB overexpression or SHMT2 knockdown decreased glucose uptake, lactate production, proliferation, migration, and invasion and increased apoptosis and TMZ sensitivity of the cells. NFYB activated HDAC5 to inhibit SHMT2 expression. SHMT2 overexpression nullified the inhibitory effects of NFYB overexpression on glycolysis and TMZ resistance. Thus, NFYB may reduce tumorigenicity and TMZ resistance of GBM through effects on the HDAC5/SHMT2 axis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proliferación Celular , Lactatos/farmacología , Lactatos/uso terapéutico , Glucosa , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/farmacología
17.
PLoS One ; 18(8): e0289332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37531316

RESUMEN

Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog's ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Duplicación de Gen , Histonas/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639593

RESUMEN

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Asunto(s)
Rabdomiosarcoma , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Aberraciones Cromosómicas , Rabdomiosarcoma/genética , Factores de Transcripción
19.
Commun Biol ; 6(1): 596, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268670

RESUMEN

Two splicing variants exist in NFYA that exhibit high expression in many human tumour types. The balance in their expression correlates with prognosis in breast cancer, but functional differences remain unclear. Here, we demonstrate that NFYAv1, a long-form variant, upregulates the transcription of essential lipogenic enzymes ACACA and FASN to enhance the malignant behavior of triple-negative breast cancer (TNBC). Loss of the NFYAv1-lipogenesis axis strongly suppresses malignant behavior in vitro and in vivo, indicating that the NFYAv1-lipogenesis axis is essential for TNBC malignant behavior and that the axis might be a potential therapeutic target for TNBC. Furthermore, mice deficient in lipogenic enzymes, such as Acly, Acaca, and Fasn, exhibit embryonic lethality; however, Nfyav1-deficient mice exhibited no apparent developmental abnormalities. Our results indicate that the NFYAv1-lipogenesis axis has tumour-promoting effects and that NFYAv1 may be a safe therapeutic target for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Metabolismo de los Lípidos/genética , Línea Celular Tumoral , Pronóstico , Lipogénesis , Factor de Unión a CCAAT/metabolismo
20.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108097

RESUMEN

The nuclear factor Y (NF-Y) transcription factor contains three subfamilies: NF-YA, NF-YB, and NF-YC. The NF-Y family have been reported to be key regulators in plant growth and stress responses. However, little attention has been given to these genes in melon (Cucumis melo L.). In this study, twenty-five NF-Ys were identified in the melon genome, including six CmNF-YAs, eleven CmNF-YBs, and eight CmNF-YCs. Their basic information (gene location, protein characteristics, and subcellular localization), conserved domains and motifs, and phylogeny and gene structure were subsequently analyzed. Results showed highly conserved motifs exist in each subfamily, which are distinct between subfamilies. Most CmNF-Ys were expressed in five tissues and exhibited distinct expression patterns. However, CmNF-YA6, CmNF-YB1/B2/B3/B8, and CmNF-YC6 were not expressed and might be pseudogenes. Twelve CmNF-Ys were induced by cold stress, indicating the NF-Y family plays a key role in melon cold tolerance. Taken together, our findings provide a comprehensive understanding of CmNF-Y genes in the development and stress response of melon and provide genetic resources for solving the practical problems of melon production.


Asunto(s)
Genes de Plantas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA