Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 543(7644): 265-269, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241141

RESUMEN

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.


Asunto(s)
Acetilación , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Oncogenes/genética , Factores de Elongación Transcripcional/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Epigénesis Genética , Femenino , Edición Génica , Histonas/química , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Lisina/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , ARN Polimerasa II/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
2.
Mol Neurobiol ; 54(10): 7808-7823, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27844289

RESUMEN

TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.


Asunto(s)
Citoesqueleto/metabolismo , Neuroblastoma/metabolismo , Proyección Neuronal/fisiología , Neuronas/metabolismo , Factores de Elongación Transcripcional/biosíntesis , Empalme Alternativo/fisiología , Animales , Línea Celular Tumoral , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Neuroblastoma/genética , Neuroblastoma/patología , Neuronas/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
3.
J Immunol ; 193(9): 4663-74, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25238757

RESUMEN

Differentiation of B cells into Ab-secreting cells induces changes in gene transcription, IgH RNA processing, the unfolded protein response (UPR), and cell architecture. The transcription elongation factor eleven nineteen lysine-rich leukemia gene (ELL2) stimulates the processing of the secreted form of the IgH mRNA from the H chain gene. Mice (mus musculus) with the ELL2 gene floxed in either exon 1 or exon 3 were constructed and crossed to CD19-driven cre/CD19(+). The B cell-specific ELL2 conditional knockouts (cKOs; ell2(loxp/loxp) CD19(cre/+)) exhibit curtailed humoral responses both in 4-hydroxy-3-nitrophenyl acetyl-Ficoll and in 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin immunized animals; recall responses were also diminished. The number of immature and recirculating B cells in the bone marrow is increased in the cKOs, whereas plasma cells in spleen are reduced relative to control animals. There are fewer IgG1 Ab-producing cells in the bone marrow of cKOs. LPS ex vivo-stimulated B220(lo)CD138(+) cells from ELL2-deficient mouse spleens are 4-fold less abundant than from control splenic B cells; have a paucity of secreted IgH; and have distended, abnormal-appearing endoplasmic reticulum. IRE1α is efficiently phosphorylated, but the amounts of Ig κ, ATF6, BiP, Cyclin B2, OcaB (BOB1, Pou2af1), and XBP1 mRNAs, unspliced and spliced, are severely reduced in ELL2-deficient cells. ELL2 enhances the expression of BCMA (also known as Tnfrsf17), which is important for long-term survival. Transcription yields from the cyclin B2 and the canonical UPR promoter elements are upregulated by ELL2 cDNA. Thus, ELL2 is important for many aspects of Ab secretion, XBP1 expression, and the UPR.


Asunto(s)
Inmunoglobulinas/genética , ARN Mensajero/genética , Factores de Elongación Transcripcional/metabolismo , Respuesta de Proteína Desplegada , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/ultraestructura , Diferenciación Celular , Eliminación de Gen , Expresión Génica , Orden Génico , Marcación de Gen , Sitios Genéticos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Inmunoglobulinas/metabolismo , Inmunofenotipificación , Ratones , Ratones Noqueados , Fenotipo , Transcripción Genética , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
4.
Biochim Biophys Acta ; 1824(5): 759-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22446411

RESUMEN

The Ctr9 protein is a member of the Paf1 complex implicated in multiple functions: transcription initiation and elongation by RNA pol II, RNA processing and histone modifications. It has also been described as a triple-helical DNA binding protein. Loss of Ctr9 results in severe phenotypes similar to the loss of Paf1p, a Paf1 complex subunit. However, the exact role of Ctr9 is not entirely established. To study the biological role of the protein Ctr9 in yeast, we used 2-D gel electrophoresis and characterized proteome alterations in a ctr9Δ mutant strain. Here we present results suggesting that Ctr9 has function distinct from its established role in the Paf1 complex. This role could be linked to its ability to bind to DNA complex structures as triplexes that may have function in regulation of gene expression.


Asunto(s)
Proteínas de Ciclo Celular/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Proteínas de Ciclo Celular/deficiencia , ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel Bidimensional , Eliminación de Gen , Proteínas Nucleares/metabolismo , Proteoma , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado , Radioisótopos de Azufre , Transcripción Genética , Factores de Elongación Transcripcional/deficiencia
5.
FEBS Lett ; 585(12): 1929-33, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21569772

RESUMEN

TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II through blocks to elongation. Arabidopsis plants lacking TFIIS are affected in seed dormancy, which represents a block to complete germination under favourable conditions. We have comparatively profiled the transcript levels of seeds of tfIIs mutants and control plants. Among the differentially expressed genes, the DOG1 gene was identified that is a QTL for seed dormancy. The reduced expression of DOG1 in tfIIs seeds was confirmed by quantitative RT-PCR and Northern analyses, suggesting that down-regulation of DOG1 expression is involved in the seed dormancy phenotype of tfIIs mutants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Factores de Elongación Transcripcional/deficiencia , Proteínas de Arabidopsis/análisis , Perfilación de la Expresión Génica , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo , Semillas/genética
6.
DNA Repair (Amst) ; 9(11): 1142-50, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20729154

RESUMEN

Inhibition of transcription elongation can cause severe developmental and neurological abnormalities notably manifested by the rare recessive progeroid disorder Cockayne syndrome (CS). DNA alterations can cause permanent blocks to an elongating RNA polymerase II (RNAPII) leading to transcriptional arrest. Abrogation of transcription arrest requires removal of transcription blocking lesions through transcription-coupled nucleotide excision repair (TC-NER) a process defective in CS. Transcription elongation factor IIS (TFIIS) has been found to localize with the TC-NER complex after cellular exposure to UV-C light and in vitro addition of TFIIS to a damage arrested RNAPII causes transcript shortening. Hence default TFIIS activity might mimic or contribute to the severe phenotype of Cockayne syndrome. Here we show that down regulation of TFIIS by siRNA treatment of human cells lead to impaired RNA synthesis recovery and elevated levels of hyper-phosphorylated RNAPII after UV-irradiation. TFIIS knock down does not affect TC-NER, the reappearance of hypo-phosphorylated RNAPII post-UV-irradiation, UV sensitivity or the p53 damage response. These findings reveal a role for TFIIS in transcription recovery and re-establishment of the balance between hypo- and hyper-phosphorylated RNAPII after DNA damage repair.


Asunto(s)
Transcripción Genética/efectos de la radiación , Factores de Elongación Transcripcional/metabolismo , Rayos Ultravioleta , Línea Celular , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación/efectos de la radiación , ARN/biosíntesis , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/genética , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
7.
Fungal Genet Biol ; 47(4): 288-96, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20060921

RESUMEN

As a means to study surface proteins involved in the yeast to hypha transition, human monoclonal antibody fragments (single-chain variable fragments, scFv) have been generated that bind to antigens expressed on the surface of Candida albicans yeast and/or hyphae. A cDNA expression library was constructed from hyphae, and screened for immunoreactivity with scFv5 as a means to identify its cognate antigen. A reactive clone contained the 3' end of the C. albicans gene, orf 19.7136, designated SPT6 based on homology to Saccharomyces cerevisiae, where its product functions as a transcription elongation factor. A mutant containing a homozygous deletion of SPT6 was isolated, demonstrating that unlike S. cerevisiae, deletion of this gene in C. albicans is not lethal. Growth of this strain was severely impaired, however, as was its capacity to undergo filamentous growth. Reactivity with scFv5 was not detected in the mutant strain, although its impaired growth complicates the interpretation of this finding. To assess C. albicansSPT6 function, expression of the C. albicans gene was induced in a defined S. cerevisiaespt6 mutant. Partial complementation was seen, confirming that the C. albicans and S. cerevisiae genes are functionally related in these species.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Hifa/crecimiento & desarrollo , Factores de Elongación Transcripcional/genética , Secuencia de Aminoácidos , ADN de Hongos/química , ADN de Hongos/genética , Expresión Génica , Biblioteca de Genes , Humanos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Elongación Transcripcional/deficiencia
8.
Biochimie ; 92(2): 157-63, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19925844

RESUMEN

LepA is a translational GTPase highly conserved in bacterial lineages. While it has been shown that LepA can catalyze reverse ribosomal translocation in vitro, the role of LepA in the cell remains unclear. Here, we show that deletion of the lepA gene (DeltalepA) in Escherichia coli causes hypersensitivity to potassium tellurite and penicillin G, but has no appreciable effect on growth under many other conditions. DeltalepA does not increase miscoding or frameshifting errors under normal or stress conditions, indicating that LepA does not contribute to the fidelity of translation. Overexpression of LepA interferes with tmRNA-mediated peptide tagging and A-site mRNA cleavage, suggesting that LepA is a bona fide translation factor that can act on stalled ribosomes with a vacant A site in vivo. Together these results lead us to hypothesize that LepA is involved in co-translational folding of proteins that are otherwise vulnerable to tellurite oxidation.


Asunto(s)
Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Biosíntesis de Proteínas/fisiología , Telurio/farmacología , Factores de Elongación Transcripcional/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Eliminación de Gen , Oxidantes/farmacología , Factores de Iniciación de Péptidos , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , ARN Mensajero/genética , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
9.
J Cell Biochem ; 108(2): 508-18, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19639603

RESUMEN

A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation. In correlation, we found that the depletion of SSRP1 in HU-treated human cells elevated the number of Rad51 and H2AX foci, while over-expression of the wild-type SSRP1 markedly reduced HU-induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54-promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication-associated DNA damage response by suppressing avoidable HR repair events.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Recombinación Genética , Factores de Elongación Transcripcional/fisiología , Animales , Western Blotting , Cricetinae , Cricetulus , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genes Reporteros , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/deficiencia , Proteínas del Grupo de Alta Movilidad/genética , Histonas/metabolismo , Humanos , Hidroxiurea , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos , Plásmidos , Unión Proteica , ARN Interferente Pequeño , Recombinasa Rad51/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Factores de Elongación Transcripcional/biosíntesis , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética , Transfección
10.
Mol Biol Cell ; 20(8): 2229-41, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19225160

RESUMEN

The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability.


Asunto(s)
Complejos Multiproteicos/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Proteínas de Ciclo Celular/metabolismo , Codón sin Sentido/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Recesivos , Prueba de Complementación Genética , Factores de Terminación de Péptidos , Fenotipo , Priones/química , Biosíntesis de Proteínas , Estructura Cuaternaria de Proteína , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Supresión Genética , Proteína de Unión a TATA-Box/metabolismo , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/metabolismo
11.
J Mol Biol ; 386(3): 598-611, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19150360

RESUMEN

Transcript elongation factor TFIIS promotes efficient transcription by RNA polymerase II, since it assists in bypassing blocks during mRNA synthesis. While yeast cells lacking TFIIS are viable, inactivation of mouse TFIIS causes embryonic lethality. Here, we have identified a protein encoded in the Arabidopsis genome that displays a marked sequence similarity to TFIIS of other organisms, primarily within domains II and III in the C-terminal part of the protein. TFIIS is widely expressed in Arabidopsis, and a green fluorescent protein-TFIIS fusion protein localises specifically to the cell nucleus. When expressed in yeast cells lacking the endogenous TFIIS, Arabidopsis TFIIS partially complements the sensitivity of mutant cells to the nucleotide analog 6-azauridine, which is a typical characteristic of transcript elongation factors. We have characterised Arabidopsis lines harbouring T-DNA insertions in the coding sequence of TFIIS. Plants homozygous for T-DNA insertions are viable, and genomewide transcript profiling revealed that compared to control plants, a relatively small number of genes are differentially expressed in mutant plants. TFIIS(-/-) plants display essentially normal development, but they flower slightly earlier than control plants and show clearly reduced seed dormancy. Plants with RNAi-mediated knockdown of TFIIS expression also are affected in seed dormancy. Therefore, TFIIS plays a critical role in Arabidopsis seed development.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Semillas/fisiología , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Núcleo Celular/química , Supervivencia Celular , ADN Bacteriano/genética , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Genes Reporteros , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Homocigoto , Datos de Secuencia Molecular , Mutagénesis Insercional , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Semillas/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética
12.
Mol Cell Biol ; 26(8): 3194-203, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581793

RESUMEN

Transcription elongation factor S-II/TFIIS promotes readthrough of transcriptional blocks by stimulating nascent RNA cleavage activity of RNA polymerase II in vitro. The biologic significance of S-II function in higher eukaryotes, however, remains unclear. To determine its role in mammalian development, we generated S-II-deficient mice through targeted gene disruption. Homozygous null mutants died at midgestation with marked pallor, suggesting severe anemia. S-II(-/-) embryos had a decreased number of definitive erythrocytes in the peripheral blood and disturbed erythroblast differentiation in fetal liver. There was a dramatic increase in apoptotic cells in S-II(-/-) fetal liver, which was consistent with a reduction in Bcl-x(L) gene expression. The presence of phenotypically defined hematopoietic stem cells and in vitro colony-forming hematopoietic progenitors in S-II(-/-) fetal liver indicates that S-II is dispensable for the generation and differentiation of hematopoietic stem cells. S-II-deficient fetal liver cells, however, exhibited a loss of long-term repopulating potential when transplanted into lethally irradiated adult mice, indicating that S-II deficiency causes an intrinsic defect in the self-renewal of hematopoietic stem cells. Thus, S-II has critical and nonredundant roles in definitive hematopoiesis.


Asunto(s)
Hematopoyesis/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/fisiología , Animales , Apoptosis , Western Blotting , Diferenciación Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Cruzamientos Genéticos , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/efectos de la radiación , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/patología , Hígado/citología , Hígado/embriología , Hígado/patología , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Quimera por Radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Elongación Transcripcional/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA