Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Mol Biol Rep ; 49(2): 1303-1320, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34807377

RESUMEN

BACKGROUND: Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS: In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS: Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.


Asunto(s)
Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos/genética , Humanos , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia , Factores de Transcripción/genética , Transcripción Genética/genética , Transcripción Genética/fisiología , Factores de Elongación Transcripcional/fisiología
3.
Nucleic Acids Res ; 49(9): 4944-4953, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33877330

RESUMEN

Transcription elongation can be affected by numerous types of obstacles, such as nucleosome, pausing sequences, DNA lesions and non-B-form DNA structures. Spt4/5 and Elf1 are conserved transcription elongation factors that promote RNA polymerase II (Pol II) bypass of nucleosome and pausing sequences. Importantly, genetic studies have shown that Spt4/5 plays essential roles in the transcription of expanded nucleotide repeat genes associated with inherited neurological diseases. Here, we investigate the function of Spt4/5 and Elf1 in the transcription elongation of CTG•CAG repeat using an in vitro reconstituted yeast transcription system. We found that Spt4/5 helps Pol II transcribe through the CTG•CAG tract duplex DNA, which is in good agreement with its canonical roles in stimulating transcription elongation. In sharp contrast, surprisingly, we revealed that Spt4/5 greatly inhibits Pol II transcriptional bypass of CTG and CAG slip-out structures. Furthermore, we demonstrated that transcription elongation factor Elf1 individually and cooperatively with Spt4/5 inhibits Pol II bypass of the slip-out structures. This study uncovers the important functional interplays between template DNA structures and the function of transcription elongation factors. This study also expands our understanding of the functions of Spt4/5 and Elf1 in transcriptional processing of trinucleotide repeat DNA.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , ADN Forma B/química , ADN/química , Proteínas Nucleares/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética , Factores de Elongación Transcripcional/fisiología , Repeticiones de Trinucleótidos
4.
Cell Cycle ; 20(5-6): 465-479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33590780

RESUMEN

In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.


Asunto(s)
Cromatina/química , Cromatina/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/fisiología , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/fisiología , Animales , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiología , Humanos , Nucleosomas/química , Nucleosomas/fisiología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/fisiología
5.
Exp Cell Res ; 399(2): 112445, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33417923

RESUMEN

Melanoma is characterized by high mortality and poor prognosis due to metastasis. AFF4 (AF4/FMR2 family member 4), as a scaffold protein, is a component of the super elongation complex (SEC), and is involved in the progression of tumors, e.g., leukemia, head and neck squamous cell carcinoma (HNSCC). However, few studies on AFF4 have focused on melanoma. Here, AFF4 expression levels and clinicopathological features were evaluated in melanoma tissue samples. Then, we performed cell proliferation, migration and invasion assays in A375 and A2058 cells lines in vitro to evaluate the role of AFF4 in melanoma. The effects of AFF4 knockdown in vivo were characterized via a xenograft mouse model. Finally, the correlation between c-Jun and AFF4 protein levels in melanoma was analyzed by rescue assay and immunohistochemistry (IHC). We found that AFF4 expression was upregulated in melanoma tumor tissues and that AFF4 protein expression was also closely related to the prognosis of patients with cutaneous melanoma. Moreover, AFF4 could promote the invasion and migration of melanoma cells by mediating epithelial to mesenchymal transition (EMT). AFF4 might regulate c-Jun activity to promote the invasion and migration of melanoma cells. Importantly, c-Jun was regulated by the AFF4 promoted melanoma tumorigenesis in vivo. Taken together, AFF4 may be a novel oncogene that promotes melanoma progression through regulation of c-Jun activity.


Asunto(s)
Melanoma/patología , Proteínas Proto-Oncogénicas c-jun/genética , Neoplasias Cutáneas/patología , Factores de Elongación Transcripcional/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Neoplasias Cutáneas/genética
7.
Elife ; 92020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32324136

RESUMEN

Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Germinativas/fisiología , Neuronas/fisiología , Serotonina/fisiología , Estrés Fisiológico/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Proteínas de Unión al ADN/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Choque Térmico/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Calor , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Factores de Elongación Transcripcional/fisiología
8.
Gut ; 69(2): 329-342, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31439637

RESUMEN

OBJECTIVE: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS: We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION: In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Chaperonas de Histonas/fisiología , Neoplasias Hepáticas/fisiopatología , Estrés Oxidativo/fisiología , Factores de Elongación Transcripcional/fisiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carbazoles/farmacología , Carbazoles/uso terapéutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/prevención & control , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes/métodos , Proteínas del Grupo de Alta Movilidad/antagonistas & inhibidores , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/fisiopatología , Neoplasias Hepáticas Experimentales/prevención & control , Ratones Endogámicos BALB C , Ratones Desnudos , Estrés Oxidativo/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Factores de Elongación Transcripcional/antagonistas & inhibidores , Factores de Elongación Transcripcional/biosíntesis , Factores de Elongación Transcripcional/genética , Regulación hacia Arriba/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Proc Natl Acad Sci U S A ; 116(44): 22140-22151, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611376

RESUMEN

Soon after exposure to genotoxic reagents, mammalian cells inhibit transcription to prevent collisions with repair machinery and to mount a proper DNA damage response. However, mechanisms underlying early transcriptional inhibition are poorly understood. In this report, we show that site-specific acetylation of super elongation complex (SEC) subunit AFF1 by p300 reduces its interaction with other SEC components and impairs P-TEFb-mediated C-terminal domain phosphorylation of RNA polymerase II both in vitro and in vivo. Reexpression of wild-type AFF1, but not an acetylation mimic mutant, restores SEC component recruitment and target gene expression in AFF1 knockdown cells. Physiologically, we show that, upon genotoxic exposure, p300-mediated AFF1 acetylation is dynamic and strongly correlated with concomitant global down-regulation of transcription-and that this can be reversed by overexpression of an acetylation-defective AFF1 mutant. Therefore, we describe a mechanism of dynamic transcriptional regulation involving p300-mediated acetylation of a key elongation factor during genotoxic stress.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Factores de Elongación Transcripcional/metabolismo , Acetilación , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Inestabilidad Genómica , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , Estrés Fisiológico , Transcripción Genética , Factores de Elongación Transcripcional/fisiología
10.
RNA ; 25(10): 1298-1310, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31289129

RESUMEN

There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in Saccharomyces cerevisiae and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Saccharomyces cerevisiae/metabolismo , Empalmosomas , Transcripción Genética , Factores de Elongación Transcripcional/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Inmunoprecipitación , Unión Proteica , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U5/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA