Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
1.
Curr Opin Microbiol ; 81: 102540, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226817

RESUMEN

RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life. NusG is a multifunctional protein: its N-terminal domain (NGN) binds to RNAP, and its C-terminal KOW domain in bacteria interacts with transcription regulators such as ribosomes and termination factors. In Escherichia coli, NusG acts as an antipausing factor. However, recent studies have revealed that NusG has distinct transcriptional regulatory roles specific to bacterial clades with clinical implications. Here, we focus on NusG's dual roles in the regulation of pausing.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Factores de Elongación de Péptidos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Bacterias/genética , Bacterias/metabolismo
2.
BMC Med Genomics ; 17(1): 226, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243045

RESUMEN

BACKGROUND: Achondroplasia and mandibulofacial dysostosis with microcephaly (MFDM) are rare monogenic, dominant disorders, caused by gain-of-function fibroblast growth factor receptor 3 (FGFR3) gene variants and loss-of-function elongation factor Tu GTP binding domain-containing 2 (EFTUD2) gene variants, respectively. The coexistence of two distinct Mendelian disorders in a single individual is uncommon and challenges the traditional paradigm of a single genetic disorder explaining a patient's symptoms, opening new avenues for diagnosis and management. CASE PRESENTATION: We present a case of a female patient initially diagnosed with achondroplasia due to a maternally inherited pathogenic FGFR3 variant. She was referred to our genetic department due to her unusually small head circumference and short stature, which were both significantly below the expected range for achondroplasia. Additional features included distinctive facial characteristics, significant speech delay, conductive hearing loss, and epilepsy. Given the complexity of her phenotype, she was recruited to the DDD (Deciphering Developmental Disorders) study and the 100,000 Genomes project for further investigation. Subsequent identification of a complex EFTUD2 intragenic rearrangement confirmed an additional diagnosis of mandibulofacial dysostosis with microcephaly (MFDM). CONCLUSION: This report presents the first case of a dual molecular diagnosis of achondroplasia and mandibulofacial dysostosis with microcephaly in the same patient. This case underscores the complexity of genetic diagnoses and the potential for coexistence of multiple genetic syndromes in a single patient. This case expands our understanding of the molecular basis of dual Mendelian disorders and highlights the importance of considering the possibility of dual molecular diagnoses in patients with phenotypic features that are not fully accounted for by their primary diagnosis.


Asunto(s)
Acondroplasia , Disostosis Mandibulofacial , Microcefalia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Ribonucleoproteína Nuclear Pequeña U5 , Humanos , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/complicaciones , Femenino , Disostosis Mandibulofacial/genética , Acondroplasia/genética , Acondroplasia/complicaciones , Ribonucleoproteína Nuclear Pequeña U5/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Factores de Elongación de Péptidos/genética , Fenotipo
3.
Nat Commun ; 15(1): 7520, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214958

RESUMEN

After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Regiones Promotoras Genéticas , Factor sigma , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factor sigma/metabolismo , Factor sigma/genética , Factor sigma/química , Transcripción Genética , Factores de Transcripción/metabolismo , Dominios Proteicos , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/química , Represoras Lac/metabolismo , Represoras Lac/genética
4.
Biochemistry ; 63(16): 2030-2039, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39088556

RESUMEN

RfaH is a two-domain transcription factor in which the C-terminal domain switches fold from an α-helical hairpin to a ß-roll upon binding the ops-paused RNA polymerase. To ascertain the presence of a sparsely populated excited state that may prime the autoinhibited resting state of RfaH for binding ops-paused RNA polymerase, we carried out a series of NMR-based exchange experiments to probe for conformational exchange on the millisecond time scale. Quantitative analysis of these data reveals exchange between major ground (∼95%) and sparsely populated excited (∼5%) states with an exchange lifetime of ∼3 ms involving residues at the interface between the N-terminal and C-terminal domains formed by the ß3/ß4 hairpin and helix α3 of the N-terminal domain and helices α4 and α5 of the C-terminal domain. The largest 15N backbone chemical shift differences are associated with the ß3/ß4 hairpin, leading us to suggest that the excited state may involve a rigid body lateral displacement/rotation away from the C-terminal domain to adopt a position similar to that seen in the active RNA polymerase-bound state. Such a rigid body reorientation would result in a reduction in the interface between the N- and C-terminal domains with the possible introduction of a cavity or cavities. This hypothesis is supported by the observation that the population of the excited species and the exchange rate of interconversion between ground and excited states are reduced at a high (2.5 kbar) pressure. Mechanistic implications for fold switching of the C-terminal domain in the context of RNA polymerase binding are discussed.


Asunto(s)
Proteínas de Escherichia coli , Pliegue de Proteína , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Resonancia Magnética Nuclear Biomolecular , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Transactivadores/metabolismo , Transactivadores/química , Transactivadores/genética , Modelos Moleculares , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Conformación Proteica
5.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39189989

RESUMEN

Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Factores de Elongación de Péptidos , Péptidos , Proteoma , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Péptidos/metabolismo , Péptidos/genética , Bacterias/genética , Bacterias/metabolismo , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Nucleic Acids Res ; 52(16): 9710-9726, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39036954

RESUMEN

The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.


Asunto(s)
Complejo IV de Transporte de Electrones , Proteínas Mitocondriales , Ribosomas Mitocondriales , Péptidos , Biosíntesis de Proteínas , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Péptidos/metabolismo , Péptidos/genética , Ribosomas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , Células HEK293 , Ciclooxigenasa 1
7.
Nucleic Acids Res ; 52(16): 9854-9866, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38943426

RESUMEN

Efficiency of protein synthesis on the ribosome is strongly affected by the amino acid composition of the assembled amino acid chain. Challenging sequences include proline-rich motifs as well as highly positively and negatively charged amino acid stretches. Members of the F subfamily of ABC ATPases (ABCFs) have been long hypothesised to promote translation of such problematic motifs. In this study we have applied genetics and reporter-based assays to characterise the four housekeeping ABCF ATPases of Bacillus subtilis: YdiF, YfmM, YfmR/Uup and YkpA/YbiT. We show that YfmR cooperates with the translation factor EF-P that promotes translation of Pro-rich motifs. Simultaneous loss of both YfmR and EF-P results in a dramatic growth defect. Surprisingly, this growth defect can be largely suppressed though overexpression of an EF-P variant lacking the otherwise crucial 5-amino-pentanolylated residue K32. Using in vivo reporter assays, we show that overexpression of YfmR can alleviate ribosomal stalling on Asp-Pro motifs. Finally, we demonstrate that YkpA/YbiT promotes translation of positively and negatively charged motifs but is inactive in resolving ribosomal stalls on proline-rich stretches. Collectively, our results provide insights into the function of ABCF translation factors in modulating protein synthesis in B. subtilis.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Biosíntesis de Proteínas , Ribosomas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencias de Aminoácidos
8.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731549

RESUMEN

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Biosíntesis de Proteínas , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Antituberculosos/farmacología , Antituberculosos/química , Ribosomas/metabolismo , Modelos Moleculares , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/metabolismo , Conformación Proteica
9.
Nucleic Acids Res ; 52(10): 5825-5840, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38661232

RESUMEN

Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Escherichia coli , Escherichia coli , Péptidos , Secuencia de Aminoácidos , Transportadoras de Casetes de Unión a ATP/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Péptidos/metabolismo , Péptidos/química , Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ribosomas/genética
10.
Cell Rep ; 43(5): 114063, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38635400

RESUMEN

Bacteria overcome ribosome stalling by employing translation elongation factor P (EF-P), which requires post-translational modification (PTM) for its full activity. However, EF-Ps of the PGKGP subfamily are unmodified. The mechanism behind the ability to avoid PTM while retaining active EF-P requires further examination. Here, we investigate the design principles governing the functionality of unmodified EF-Ps in Escherichia coli. We screen for naturally unmodified EF-Ps with activity in E. coli and discover that the EF-P from Rhodomicrobium vannielii rescues growth defects of a mutant lacking the modification enzyme EF-P-(R)-ß-lysine ligase. We identify amino acids in unmodified EF-P that modulate its activity. Ultimately, we find that substitution of these amino acids in other marginally active EF-Ps of the PGKGP subfamily leads to fully functional variants in E. coli. These results provide strategies to improve heterologous expression of proteins with polyproline motifs in E. coli and give insights into cellular adaptations to optimize protein synthesis.


Asunto(s)
Escherichia coli , Factores de Elongación de Péptidos , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Secuencia de Aminoácidos
11.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562046

RESUMEN

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Asunto(s)
Discapacidad Intelectual , Disostosis Mandibulofacial , Microcefalia , Humanos , Microcefalia/patología , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/patología , Fenotipo , Mutación , Discapacidad Intelectual/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
12.
Nature ; 628(8006): 186-194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509362

RESUMEN

Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.


Asunto(s)
Proteínas Bacterianas , Farmacorresistencia Bacteriana , Evolución Molecular , Aptitud Genética , Mycobacterium tuberculosis , Rifampin , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genómica , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Rifampin/farmacología , Rifampin/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
13.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38440860

RESUMEN

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Exorribonucleasas , Factores de Elongación de Péptidos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(8): e2314437121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349882

RESUMEN

Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Muerte Celular , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo
15.
Curr Opin Struct Biol ; 84: 102766, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181687

RESUMEN

RNA polymerase II (Pol II) transcription is regulated by many elongation factors. Among these factors, TFIIF, PAF-RTF1, ELL and Elongin stimulate mRNA chain elongation by Pol II. Cryo-EM structures of Pol II complexes with these elongation factors now reveal some general principles on how elongation factors bind Pol II and how they stimulate transcription. All four elongation factors contact Pol II at domains external 2 and protrusion, whereas TFIIF and ELL additionally bind the Pol II lobe. All factors apparently stabilize cleft-flanking elements, whereas RTF1 and Elongin additionally approach the active site with a latch element and may influence catalysis or translocation. Due to the shared binding sites on Pol II, factor binding is mutually exclusive, and thus it remains to be studied what determines which elongation factors bind at a certain gene and under which condition.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción TFII , ARN Polimerasa II/química , Elonguina/genética , Elonguina/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Sitios de Unión , Transcripción Genética
16.
J Exp Clin Cancer Res ; 43(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163859

RESUMEN

BACKGROUND: Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS: Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS: We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION: Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Retroalimentación , Simulación del Acoplamiento Molecular , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Proliferación Celular , Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/farmacología
17.
Sci Adv ; 9(47): eadj1261, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37992162

RESUMEN

The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.


Asunto(s)
Factores de Elongación de Péptidos , ARN Polimerasa II , Animales , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Elongación de Péptidos/genética , Primates/genética , Elonguina/genética , Familia de Multigenes , Secuencias Repetidas en Tándem/genética
18.
mBio ; 14(5): e0146123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37681945

RESUMEN

IMPORTANCE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.


Asunto(s)
Factor Tu de Elongación Peptídica , Factores de Elongación de Péptidos , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Antibacterianos/farmacología , Proteínas de Unión al ARN/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN de Transferencia/metabolismo
19.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2794-2805, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584132

RESUMEN

Hevea brasiliensis is the main source of natural rubber. Restricted by its tropical climate conditions, the planting area in China is limited, resulted in a low self-sufficiency. Periploca sepium which can produce natural rubber is a potential substitute plant. cis-prenyltransferase (CPT), small rubber particle protein (SRPP) and rubber elongation factor (REF) are key enzymes involved in the biosynthesis of cis-1, 4-polyisoprene, the main component of natural rubber. In this study, we cloned the promoter sequences of CPT, SRPP and REF through chromosome walking strategy. The spatial expression patterns of the three promoters were analyzed using GUS (ß-glucuronidase) as a reporter gene driven by the promoters through Agrobacterium-mediated genetic transformation. The results showed that GUS driven by CPT, SRPP or REF promoter was expressed in leaves and stems, especially in the leaf vein and vascular bundle. The GUS activity in stems was higher than that in leaf. This study provided a basis for analyzing the biosynthesis mechanism of natural rubber and breeding new varieties of high yield natural rubber.


Asunto(s)
Factores de Elongación de Péptidos , Periploca , Factores de Elongación de Péptidos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Periploca/genética , Periploca/metabolismo , Goma , Fitomejoramiento , Clonación Molecular
20.
J Appl Oral Sci ; 31: e20230058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466550

RESUMEN

BACKGROUND: Periodontitis Stage III-IV, Grade C (PerioC) is a severe form of Periodontitis. The individual genetic background has been shown to be an important etiopathogenic factor for the development of this disease in young, systemically healthy, and non-smokers patients. Recently, after exome sequencing of families with a history of the disease, PerioC was associated with three single nucleotide variations (SNVs) - rs142548867 (EEFSEC), rs574301770 (ZNF136), and rs72821893 (KRT25) - which were classified as deleterious or possibly harmful by prediction algorithms. OBJECTIVE: Seeking to validate these findings in a cohort evaluation, this study aims to characterize the allele and genotypic frequency of the SNVs rs142548867, rs574301770, and rs72821893 in the Brazilian population with PerioC and who were periodontally healthy (PH). METHODOLOGY: Thus, epithelial oral cells from 200 PerioC and 196 PH patients were harvested at three distinct centers at the Brazilian Southern region, their DNA were extracted, and the SNVs rs142548867, rs574301770, rs72821893 were genotyped using 5'-nuclease allelic discrimination assay. Differences in allele and genotype frequencies were analyzed using Fisher's Exact Test. Only the SNV rs142548867 (C > T) was associated with PerioC. RESULTS: The CT genotype was detected more frequently in patients with PerioC when compared with PH subjects (6% and 0.5% respectively), being significantly associated with PerioC (odds ratio 11.76, p=0.02). CONCLUSION: rs142548867 represents a potential risk for the occurrence of this disease in the Brazilian population.


Asunto(s)
Periodontitis , Polimorfismo de Nucleótido Simple , Humanos , Brasil , Periodontitis/genética , Genotipo , Alelos , Frecuencia de los Genes , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Factores de Elongación de Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA