Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Nature ; 632(8024): 419-428, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020166

RESUMEN

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformación Celular Neoplásica , Evolución Clonal , Células Clonales , Análisis de la Célula Individual , Factores de Necrosis Tumoral , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Evolución Clonal/genética , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Macrófagos/metabolismo , Mutación , Invasividad Neoplásica/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Comunicación Autocrina , Análisis de Supervivencia
2.
Biol Reprod ; 111(2): 322-331, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38984926

RESUMEN

Intrauterine adhesion (IUA) is manifestations of endometrial fibrosis and excessive extracellular matrix deposition. C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adiponectin paralog which has been reported to modulate the fibrosis process of several diseases; however, the endometrial fibrosis function of CTRP6 remains unknown. Our study aimed to assess the role of CTRP6 in endometrial fibrosis and further explore the underlying mechanism. Here, we found that the expression of CTRP6 was downregulated in the endometrial tissues of IUA. In vitro experiments demonstrated the reduced level of CTRP6 in facilitated transforming growth factor-ß1 (TGF-ß1)-induced human endometrial stromal cells (HESCs). In addition, CTRP6 inhibited the expression of α-smooth muscle actin (α-SMA) and collagen I in TGF-ß1-treated HESCs. Mechanistically, CTRP6 activated the AMP-activated protein kinase (AMPK) and protein kinase B (AKT) pathway in HESCs, and AMPK inhibitor (AraA) or PI3K inhibitor (LY294002) pretreatment abolished the protective effect of CTRP6 on TGF-ß1-induced fibrosis. CTRP6 markedly decreased TGF-ß1-induced Smad3 phosphorylation and nuclear translocation, and AMPK or AKT inhibition reversed these effects. Notably, CTRP6-overexpressing treatment alleviated the fibrosis of endometrium in vivo. Therefore, CTRP6 ameliorates endometrial fibrosis, among which AMPK and AKT are essential for the anti-fibrotic effect of CTRP6 via the Smad3 pathway. Taken together, CTRP6 may be a potential therapeutic target for the treatment of intrauterine adhesion.


Asunto(s)
Endometrio , Fibrosis , Transducción de Señal , Proteína smad3 , Animales , Femenino , Humanos , Ratones , Adipoquinas/metabolismo , Colágeno , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Endometrio/patología , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Proteína smad3/genética , Adherencias Tisulares/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/genética , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología
3.
Front Immunol ; 15: 1398403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835752

RESUMEN

Objective: Despite extensive research on the relationship between pulmonary tuberculosis (PTB) and inflammatory factors, more robust causal evidence has yet to emerge. Therefore, this study aims to screen for inflammatory proteins that may contribute to the susceptibility to PTB in different populations and to explain the diversity of inflammatory and immune mechanisms of PTB in different ethnicity. Methods: The inverse variance weighted (IVW) model of a two-sample Mendelian Randomization (MR) study was employed to conduct causal analysis on data from a genome-wide association study (GWAS). This cohort consisting PTB GWAS datasets from two European and two East Asian populations, as well as 91 human inflammatory proteins collected from 14,824 participants. Colocalization analysis aimed to determine whether the input inflammatory protein and PTB shared the same causal single nucleotide polymorphisms (SNPs) variation within the fixed region, thereby enhancing the robustness of the MR Analysis. Meta-analyses were utilized to evaluate the combined causal effects among different datasets. Results: In this study, we observed a significant negative correlation between tumor necrosis factor-beta levels (The alternative we employ is Lymphotoxin-alpha, commonly referred to as LT) (P < 0.05) and tumor necrosis factor receptor superfamily member 9 levels (TNFRSF9) (P < 0.05). These two inflammatory proteins were crucial protective factors against PTB. Additionally, there was a significant positive correlation found between interleukin-20 receptor subunit alpha levels (IL20Ra) (P < 0.05), which may elevate the risk of PTB. Colocalization analysis revealed that there was no overlap in the causal variation between LT and PTB SNPs. A meta-analysis further confirmed the significant combined effect of LT, TNFRSF9, and IL20Ra in East Asian populations (P < 0.05). Conclusions: Levels of specific inflammatory proteins may play a crucial role in triggering an immune response to PTB. Altered levels of LT and TNFRSF9 have the potential to serve as predictive markers for PTB development, necessitating further clinical validation in real-world settings to ascertain the impact of these inflammatory proteins on PTB.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Tuberculosis Pulmonar , Humanos , Masculino , Pueblo Asiatico/genética , Análisis de la Aleatorización Mendeliana , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/inmunología , Factores de Necrosis Tumoral/genética , Pueblos del Este de Asia , Pueblo Europeo
4.
Dev Comp Immunol ; 159: 105217, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38901503

RESUMEN

Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.


Asunto(s)
Crassostrea , Granulocitos , Inmunidad Innata , Lipopolisacáridos , Norepinefrina , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Crassostrea/inmunología , Norepinefrina/metabolismo , Norepinefrina/farmacología , Granulocitos/inmunología , Granulocitos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Lipopolisacáridos/inmunología , Apoptosis , Transducción de Señal , Fagocitosis , Células Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/inmunología , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/genética
5.
Arthritis Rheumatol ; 76(9): 1419-1430, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38589318

RESUMEN

OBJECTIVE: Glucocorticoid-induced tumor necrosis factor receptor superfamily-related protein (GITR), with its ligand (GITRL), plays an important role in CD4+ T cell-mediated autoimmunity. This study aimed to investigate the underlying mechanisms of GITRL in primary Sjögren syndrome (pSS). METHODS: Patients with pSS and healthy controls were recruited. Serum GITRL and Th17-related cytokines were determined. RNA sequencing was performed to decipher key signal pathways. Nonobese diabetes (NOD) mice were adopted as experimental Sjögren models and recombinant adeno-associated virus (rAAV) transduction was conducted to verify the therapeutic potentials of targeting GITRL in vivo. RESULTS: Serum GITRL was significantly higher in patients with pSS and showed a positive correlation with leukopenia, thrombocytopenia, autoantibodies, lung involvement, and disease activity. Serum GITRL was correlated with Th17-related cytokines. GITRL promoted the expansion of Th17 and Th17.1 cells. Expansion of granulocyte-macrophage colony-stimulating factor positive (GM-CSF+) CD4+ T cells induced by GITRL could be inhibited by blockade of GITRL. Moreover, GM-CSF could stimulate GITRL expression on monocytes. RNA sequencing revealed mammalian target of rapamycin complexes 1 (mTORC1) might be the key modulator. The increased phosphorylation of S6 and STAT3 and the expansion of Th17 and Th17.1 cells induced by GITRL were effectively inhibited by rapamycin, suggesting a GITRL-mTORC1-GM-CSF positive loop in pathogenic Th17 response in pSS. Administration of an rAAV vector expressing short hairpin RNA targeting GITRL alleviated disease progression in NOD mice. CONCLUSION: Our results identified the pathogenic role of GITRL in exacerbating disease activity and promoting pathogenic Th17 response in pSS through a GITRL-mTORC1-GM-CSF loop. These findings suggest GITRL might be a promising therapeutic target in the treatment of pSS.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos NOD , Síndrome de Sjögren , Células Th17 , Factores de Necrosis Tumoral , Animales , Femenino , Humanos , Masculino , Ratones , Modelos Animales de Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/genética , Células Th17/inmunología , Factores de Necrosis Tumoral/genética
7.
Fish Shellfish Immunol ; 143: 109175, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890735

RESUMEN

Tumor necrosis factor (TNF) is an important cytokine that can regulate a variety of cellular responses by binding tumor necrosis factor receptor (TNFR). We studied whether the TNF of Eriocheir sinensis can regulate hemocyte proliferation. The results showed that the EsTNF and EsTNFR were constitutively expressed in all tested tissues, including the heart, hepatopancreas, muscles, gills, stomachs, intestines, and hemocytes. We found that low levels of EsTNF and EsTNFR transcripts were present in hemocytes. The gene expression levels were significantly increased in the hemocytes after being stimulated by Staphylococcus aureus or Vibrio parahaemolyticus. We also found some genes related to cell proliferation were expressed at a higher level in pulsing rTNF-stimulated hemocytes compared with the control group. We also knocked down the EsTNFR gene with RNAi technology. The results showed that the expression level of these genes related to cell proliferation was significantly down-regulated compared with the control group when the TNF does not bind TNFR. We used Edu technology to repeat the above experiments and the results were similar. Compared with the control group, the hemocytes stimulated by rTNF showed more significant proliferation, and the proliferation rate was significantly down-regulated after knocking down the EsTNFR gene. Therefore, we indicate that TNF binding TNFR can affect the proliferation of E. sinensis hemocytes, which might be manifested by affecting the expression of some proliferation-related genes.


Asunto(s)
Braquiuros , Infecciones Estafilocócicas , Animales , Hemocitos/metabolismo , Inmunidad Innata/genética , Factores de Necrosis Tumoral/genética , Proliferación Celular , Braquiuros/genética , Braquiuros/metabolismo , Proteínas de Artrópodos/genética , Filogenia
8.
Cell Mol Gastroenterol Hepatol ; 16(1): 83-105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37011811

RESUMEN

BACKGROUND & AIMS: Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration. METHODS: Clinical phenotype and histologic inflammation were assessed in C57BL/6 (wild-type), Tl1a-/- and Dr3-/- mice in dextran sulfate sodium (DSS)-induced colitis. We generated mice with an IEC-specific deletion of DR3 (Dr3ΔIEC) and assessed intestinal inflammation and epithelial barrier repair. In vivo intestinal permeability was assessed by fluorescein isothiocyanate dextran uptake. Proliferation of IECs was analyzed by bromodeoxyuridine incorporation. Expression of DR3 messenger RNA was assessed by fluorescent in situ hybridization. Small intestinal organoids were used to determine ex vivo regenerative potential. RESULTS: Dr3-/- mice developed more severe colonic inflammation than wild-type mice in DSS-induced colitis with significantly impaired IEC regeneration. Homeostatic proliferation of IECs was increased in Dr3-/- mice, but blunted during regeneration. Cellular localization and expression of the tight junction proteins Claudin-1 and zonula occludens-1 were altered, leading to increased homeostatic intestinal permeability. Dr3ΔIEC mice recapitulated the phenotype observed in Dr3-/- mice with increased intestinal permeability and IEC proliferation under homeostatic conditions and impaired tissue repair and increased bacterial translocation during DSS-induced colitis. Impaired regenerative potential and altered zonula occludens-1 localization also were observed in Dr3ΔIEC enteroids. CONCLUSIONS: Our findings establish a novel function of DR3 in IEC homeostasis and postinjury regeneration independent of its established role in innate lymphoid cells and T-helper cells.


Asunto(s)
Colitis , Inmunidad Innata , Ratones , Animales , Hibridación Fluorescente in Situ , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Linfocitos/metabolismo , Colitis/patología , Inflamación/patología , Factores de Necrosis Tumoral/efectos adversos , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Homeostasis , Regeneración
9.
J Invest Dermatol ; 143(7): 1208-1219.e6, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716919

RESUMEN

Keloids represent a fibrotic disorder characterized by the excessive deposition of extracellular matrix (ECM). However, the mechanisms through which ECM deposition in keloids is regulated remain elusive. In this study, we found that the expression of both TWEAK and its cognate receptor Fn14 was significantly downregulated in keloids and that TWEAK/Fn14 signaling repressed the expression of ECM-related genes in keloid fibroblasts. The IRF1 gene was essential for this repression, and the TWEAK/Fn14 downstream transcription factor p65 directly bound to the promoter of the IRF1 gene and induced its expression. Furthermore, in patients with keloid, the expression of TWEAK and Fn14 was negatively correlated with that of ECM genes and positively correlated with that of IRF1. These observations indicate that relief of TWEAK/Fn14/IRF1-mediated ECM deposition repression contributes to keloid pathogenesis, and the identified mechanism and related molecules provide potential targets for keloid treatment in the future.


Asunto(s)
Queloide , Humanos , Queloide/genética , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Regulación hacia Abajo , Citocina TWEAK/genética , Transducción de Señal , Matriz Extracelular/metabolismo , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo
10.
J Am Heart Assoc ; 12(3): e027589, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36718875

RESUMEN

Background Angiotensin II type 1 receptor blockers (ARBs) have been shown to limit the growth of abdominal aortic aneurysm (AAA), but their efficacy is controversial. This study aimed to investigate the molecular mechanism underlying the protective effect of ARBs against AAA progression. Methods and Results Olmesartan, an ARB, was administered to wild-type and osteoprotegerin-knockout (Opg-KO) mice starting 2 weeks before direct application of CaCl2 to aortas to induce AAA. The protective effect of olmesartan against AAA in wild-type and Opg-KO mice was compared at 6 weeks after AAA induction. Olmesartan prevented AAA progression in Opg-KO mice, including excessive aortic dilatation and collapse of tunica media, but not in wild-type mice. Deficiency of the Opg gene is known to cause excessive activation of the tumor necrosis factor-related apoptosis-inducing ligand-induced c-Jun N-terminal kinase/matrix metalloproteinase 9 pathway, resulting in prolonged AAA progression. Olmesartan attenuated the upregulation of phosphorylated c-Jun N-terminal kinase and matrix metalloproteinase 9 expression in the aortic wall of Opg-KO mice. In cultured vascular smooth muscle cells, tumor necrosis factor-related apoptosis-inducing ligand-induced c-Jun N-terminal kinase phosphorylation and matrix metalloproteinase 9 expression were inhibited by angiotensin (1-7), the circulating levels of which are increased by ARBs. Furthermore, administering an angiotensin (1-7) antagonist to Opg-KO mice diminished the protective effect of olmesartan against AAA progression. Conclusions Olmesartan prevented AAA progression in Opg-KO mice by upregulating angiotensin (1-7), suggesting that angiotensin (1-7) may be a key factor that mediates the protective effect of ARBs.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Aneurisma de la Aorta Abdominal , Animales , Ratones , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Modelos Animales de Enfermedad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ligandos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/farmacología , Regulación hacia Arriba
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674636

RESUMEN

The objective of this study is to observe the effect of high selenium on the antioxidant and immune functions of growing goats based on transcriptome sequencing. Eighteen goats were randomly divided into three groups: (1) the control (CON) group was fed a basal diet, and (2) the treatment 1 group (LS) and treatment 2 group (HS) were fed a basal diet with 2.4 and 4.8 mg/kg selenium-yeast (SY), respectively. The results indicate that HS treatment significantly (p < 0.05) increased the apparent digestibility of either extract and significantly increased (p < 0.05) total antioxidant capacity, whereas it significantly (p < 0.05) decreased plasma aspartate aminotransferase and malondialdehyde relative to the control group. The LS treatment had significantly (p < 0.05) increased glutathione S-transferase and catalase compared to CON. A total of 532 differentially expressed genes (DEGs) between the CON and HS were obtained using transcriptome sequencing. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated (p < 0.05) DEGs mainly related to vascular smooth muscle contraction, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, the VEGF signalling pathway, and proteoglycans in cancer; downregulated (p < 0.05) DEGs mainly related to the NOD-like receptor signalling pathway, influenza A, cytokine-cytokine receptor interaction, haematopoietic cell lineage, and African trypanosomiasis. Ontology analyses of the top genes show that the identified DEGs are mainly involved in the regulation of granulocyte macrophage colony-stimulating factor production for biological processes, the external side of the plasma membrane for cellular components, and carbohydrate derivative binding for molecular functions. Seven genes are considered potential candidate genes for regulating antioxidant activity, including selenoprotein W, 1, glutathione peroxidase 1, glutathione S-transferase A1, tumour necrosis factor, tumour necrosis factor superfamily member 10, tumour necrosis factor superfamily member 8, and tumour necrosis factor superfamily member 13b. The experimental observations indicate that dietary supplementation with 4.8 mg/kg SY can enhance antioxidant and immune functions by improving muscle immunity, reducing the concentrations of inflammatory molecules, and modulating antioxidant and inflammatory signalling pathways in growing goats.


Asunto(s)
Antioxidantes , Selenio , Animales , Antioxidantes/metabolismo , Selenio/metabolismo , Transcriptoma , Cabras/genética , Saccharomyces cerevisiae/metabolismo , Factores de Necrosis Tumoral/genética , Inmunidad
12.
Lupus ; 32(2): 171-179, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36418949

RESUMEN

OBJECTIVE: Draw upon research into the serum concentration, mRNA expression, and DNA methylation of TNF-like weak inducer of apoptosis (TWEAK) in the peripheral blood of systemic lupus erythematosus patients and healthy controls in an attempt to investigate the epigenetics associated with TWEAK in the pathogenesis of systemic lupus erythematosus (SLE). METHODS: A total of 178 SLE patients (SLE group) and 131 sex-age matched healthy controls (HC group) were recruited. Enzyme-linked immunosorbent assays (ELISA) was used to detect serum protein concentration of TWEAK. TWEAK mRNA expression was analyzed by Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Methylation levels of the promotor of TWEAK were measured using quantitative DNA methylation analysis on the MassARRAY spectrometry. RESULTS: Serum TWEAK concentrations were not statistically significant in SLE patients and HCs. Nevertheless, serum TWEAK concentrations were significantly lower in patients with renal involvement when compared to those without it. Serum TWEAK concentrations were reduced in clinically active patients (SLEDAI ≥ 10) compared with clinically stable patients (SLEDAI < 10). It was also significantly associated with SLEDAI. Compared with the HC group, the TWEAK mRNA expression in the SLE group was significantly lower. The global DNA methylation levels of TWEAK in the SLE group were observed to be significantly higher than the HC group. SLE patients with renal involvement, and the clinically active patients had higher TWEAK global methylation as well as exhibited variation in certain CpG island methylation. Furthermore, TWEAK methylation negatively correlated with TWEAK mRNA expression. CONCLUSION: This study suggests that TWEAK DNA methylation is a valuable as a focus for epigenetic studies because of it potentially influencing TWEAK gene expression in SLE patients. Aberrant DNA methylation of TWEAK may be involved in the initiation and development of SLE.


Asunto(s)
Citocina TWEAK , Lupus Eritematoso Sistémico , Humanos , Metilación de ADN , Ensayo de Inmunoadsorción Enzimática , Lupus Eritematoso Sistémico/diagnóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Necrosis Tumoral/genética , Citocina TWEAK/genética
13.
Mol Cancer Res ; 21(2): 170-186, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214671

RESUMEN

Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS: This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.


Asunto(s)
FN-kappa B , Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , FN-kappa B/metabolismo , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Carboplatino/farmacología , Receptores del Factor de Necrosis Tumoral/genética , Receptor de TWEAK/genética , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Citocina TWEAK , Transducción de Señal/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Células Madre/metabolismo , Factor de Transcripción ReIB/metabolismo
14.
Psychiatr Genet ; 32(6): 238-245, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36354138

RESUMEN

OBJECTIVE: Previous observational studies have shown that the levels of tumor necrosis factor (TNF) increased in patients with schizophrenia. The present two-sample Mendelian randomization (MR) study aims to identify the causal link between TNF and schizophrenia. METHODS: To date, the largest genome-wide association study (GWAS) for TNF (n = 23 141) and for schizophrenia (53 386 cases and 77 258 controls) was used. All participants were of European ancestry. The MR-egger_intercept test and Cochran's Q statistic were used to determine the pleiotropy and heterogeneity, respectively. Weighted median and inverse variance weighted (IVW) were used to evaluate the causal association of TNF with schizophrenia. RESULTS: We found no significant pleiotropy or heterogeneity of all three selected plasma TNF genetic instrumental variants in breast cancer GWAS. Interestingly, the odds ratio (OR) = 1.517 with 95% confidence interval (CI), 1.006-2.288 and P = 0.047 of schizophrenia correspond to one unit increase in natural log-transformed TNF levels using IVW method. The increased trend was further proven using weighted median (OR = 1.585; 95% CI, 1.017-2.469; P = 0.042). Reverse MR analysis shows no causal effect of schizophrenia on plasma TNF levels. CONCLUSIONS: Our analysis suggested a causal association between genetically increased TNF signaling and increased risk of schizophrenia in the European population. Thus, TNF may be a potential risk for schizophrenia.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética , Factores de Necrosis Tumoral/genética
15.
Biomolecules ; 12(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291687

RESUMEN

(1) Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity. The epithelial-mesenchymal transition (EMT) is one of the inducers of cancer metastasis and migration. However, the description of the EMT process in TNBC using single-cell RNA sequencing (scRNA-seq) remains unclear. (2) Methods: In this study, we analyzed 8938 cellular gene expression profiles from five TNBC patients. We first scored each malignant cell based on functional pathways to determine its EMT characteristics. Then, a pseudo-time trajectory analysis was employed to characterize the cell trajectories. Furthermore, CellChat was used to identify the cellular communications. (3) Results: We identified 888 epithelium-like and 846 mesenchyme-like malignant cells, respectively. A further pseudo-time trajectory analysis indicated the transition trends from epithelium-like to mesenchyme-like in malignant cells. To characterize the potential regulators of the EMT process, we identified 10 dysregulated transcription factors (TFs) between epithelium-like and mesenchyme-like malignant cells, in which overexpressed forkhead box protein A1 (FOXA1) was recognized as a poor prognosis marker of TNBC. Furthermore, we dissected the cell-cell communications via ligand-receptor (L-R) interactions. We observed that tumor-associated macrophages (TAMs) may support the invasion of malignant epithelial cells, based on CXCL-CXCR2 signaling. The tumor necrosis factor (TNF) signaling pathway secreted by TAMs was identified as an outgoing communication pattern, mediating the communications between monocytes/TAMs and malignant epithelial cells. Alternatively, the TNF-related ligand-receptor (L-R) pairs showed promising clinical implications. Some immunotherapy and anti-neoplastic drugs could interact with the L-R pairs as a potential strategy for the treatment of TNBC. In summary, this study enhances the understanding of the EMT process in the TNBC microenvironment, and dissections of EMT-related cell communications also provided us with potential treatment targets.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas , Humanos , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ligandos , Línea Celular Tumoral , Comunicación Celular , Factores de Transcripción Forkhead/genética , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/uso terapéutico , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Microambiente Tumoral
16.
Chemosphere ; 308(Pt 3): 136424, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116629

RESUMEN

Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 µg/L, 73.4 µg/L, and 367.0 µg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 µg/L) significantly increased body weight and condition factors in females. BPAF (73.4 µg/L and 367.0 µg/L) significantly delayed oocyte maturation. Exposure to 367.0 µg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 µg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 µg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor ß (erß), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 µg/L BPAF group showed a downward trend. In addition, exposure to 367.0 µg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.


Asunto(s)
Lectina de Unión a Manosa , Oryzias , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Aromatasa/metabolismo , Compuestos de Bencidrilo , Peso Corporal , Catalasa/metabolismo , Complemento C5/genética , Complemento C5/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Fluorocarburos , Expresión Génica , Glutatión Peroxidasa/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Lípidos , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Oryzias/fisiología , PPAR gamma/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Receptores Androgénicos/metabolismo , Receptores de HL/genética , Serina/genética , Serina/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
Circ Genom Precis Med ; 15(5): e003535, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36170352

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and its features, such as chronic intermittent hypoxia, may differentially affect specific molecular pathways and processes in the pathogenesis of coronary artery disease (CAD) and influence the subsequent risk and severity of CAD events. In particular, competing adverse (eg, inflammatory) and protective (eg, increased coronary collateral blood flow) mechanisms may operate, but remain poorly understood. We hypothesize that common genetic variation in selected molecular pathways influences the likelihood of CAD events differently in individuals with and without OSA, in a pathway-dependent manner. METHODS: We selected a cross-sectional sample of 471 877 participants from the UK Biobank, with 4974 ascertained to have OSA, 25 988 to have CAD, and 711 to have both. We calculated pathway-specific polygenic risk scores for CAD, based on 6.6 million common variants evaluated in the CARDIoGRAMplusC4D genome-wide association study (Coronary ARtery DIsease Genome wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics), annotated to specific genes and pathways using functional genomics databases. Based on prior evidence of involvement with intermittent hypoxia and CAD, we tested pathway-specific polygenic risk scores for the HIF1 (hypoxia-inducible factor 1), VEGF (vascular endothelial growth factor), NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) and TNF (tumor necrosis factor) signaling pathways. RESULTS: In a multivariable-adjusted logistic generalized additive model, elevated pathway-specific polygenic risk scores for the Kyoto Encyclopedia of Genes and Genomes VEGF pathway (39 genes) associated with protection for CAD in OSA (interaction odds ratio 0.86, P=6×10-4). By contrast, the genome-wide CAD PRS did not show evidence of statistical interaction with OSA. CONCLUSIONS: We find evidence that pathway-specific genetic risk of CAD differs between individuals with and without OSA in a qualitatively pathway-dependent manner. These results provide evidence that gene-by-environment interaction influences CAD risk in certain pathways among people with OSA, an effect that is not well-captured by the genome-wide PRS. This invites further study of how OSA interacts with genetic risk at the molecular level and suggests eventual personalization of OSA treatment to reduce CAD risk according to individual pathway-specific genetic risk profiles.


Asunto(s)
Enfermedad de la Arteria Coronaria , Apnea Obstructiva del Sueño , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Estudios Transversales , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Factores de Riesgo , Hipoxia/complicaciones , Factor 1 Inducible por Hipoxia/genética , Factores de Necrosis Tumoral/genética
18.
Environ Toxicol ; 37(11): 2589-2604, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35870112

RESUMEN

Benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon compound, is a carcinogen that causes head and neck cancers. Despite intensive research, the molecular mechanism of BaP in the development of oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the SCC-9 human OSCC cell line was cultured in vitro, separated into treatment groups, and treated with dimethyl sulfoxide or BaP at various concentrations. The malignant behavior ascribed to the BaP treatment was investigated by cell proliferation, clony formation assay, and Transwell assays. Furthermore, transcriptome sequencing was performed to detect the differentially expressed genes, followed by quantitative real-time PCR to measure the expression levels of nine of these genes. Moreover, the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the biological processes and signaling pathways in which the target genes were involved. Significant effects on SCC-9 cell proliferation, tumorigenicity, cell migration, and invasion were observed after exposure to 8 µM BaP. Additional results revealed that BaP inhibited apoptosis in a dose-dependent manner. The transcriptome sequencing results showed 137 upregulated genes and 135 downregulated genes induced by BaP, associated with tumor-related biological processes and signaling pathways, mainly including transcriptional dysregulation in cancer, the tumor necrosis factor signaling pathway, metabolism of xenobiotics by cytochrome P450, mitogen-activated protein kinase signaling pathway, and so forth. Our study demonstrates that BaP may regulate the expression of certain genes involved in tumor-associated signaling pathways, thereby promoting the proliferative, tumorigenic, and metastatic behaviors of OSCC cells while suppressing their apoptosis.


Asunto(s)
Neoplasias de la Boca , Hidrocarburos Policíclicos Aromáticos , Carcinoma de Células Escamosas de Cabeza y Cuello , Benzo(a)pireno/toxicidad , Carcinógenos , Proliferación Celular , Dimetilsulfóxido , Perfilación de la Expresión Génica , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Neoplasias de la Boca/genética , RNA-Seq , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Transcriptoma , Factores de Necrosis Tumoral/genética , Xenobióticos
19.
Dis Markers ; 2022: 8661423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707713

RESUMEN

Background: Lung cancer remains the leading cause of cancer death worldwide, and the most subtype is lung adenocarcinoma (LUAD). Tumor-infiltrating immune cells (TIICs) greatly impact the prognosis of LUAD. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), signal via its receptor fibroblast growth factor-inducible 14 (Fn14), dysregulates immune cell recruitment within tumor environment, thus promoting the progression of autoimmune diseases and cancer. We aimed to explore its role in LUAD. Methods: The expression level of TWEAK was explored in Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Oncomine databases. The Tumor Immune Dysfunction and Exclusion (TIDE) and Lung Cancer Explorer (LCE) databases were applied to evaluate the survival in correlation to TWEAK expression. TIICs were assessed with TIMER2.0 and TIDE datasets. The expression of TWEAK protein was detected in LUAD cell lines and also in tissue samples from LUAD patients via western blotting or combination with immunochemistry. Results: Our results showed that TWEAK was downregulated in LUAD tumors compared to normal tissues in TIMER2.0, Oncomine, cell lines, and clinical specimens. Poor survival was uncovered in lower TWEAK expression of LUAD patients in LCE (meta - HR = 0.84 [95% CI, 0.76-0.92]) and TCGA (Continuous Z = -1.97, p = 0.0486) and GSE13213@PRECOG (Continuous Z = -4.25, p = 2.12e - 5) in TIDE. Multiple tumor-infiltrating immune cells (TIICs) were found closely correlated with TWEAK expression in LUAD, especially hematopoietic stem cell (Rho = 0.505, p = 2.78e - 33), common lymphoid progenitor (Rho = -0.504, p = 3.79e - 33), and myeloid-derived suppressor cells (MDSCs) (Rho = -0.615, p = 1.36e - 52). Conclusion: Lower level of TWEAK was linked with poor survival and aberrant recruitment and phenotype of TIICs in LUAD, which might motivate immune escape and weaken the effects of immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Citocina TWEAK , Neoplasias Pulmonares , Linfocitos Infiltrantes de Tumor , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Citocina TWEAK/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK/genética , Factores de Necrosis Tumoral/genética
20.
Genomics ; 114(4): 110399, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680011

RESUMEN

Different human races across the globe responded in a different way to the SARS-CoV-2 infection leading to different disease severity. Therefore, it is anticipated that host genetic factors have a straight association with the COVID-19. We identified a total 6, 7, and 6 genomic loci for deceased-recovered, asymptomatic-recovered, and deceased-asymptomatic group comparison, respectively. Unfavourable alleles of the markers nearby the genes which are associated with lung and heart diseases such as Tumor necrosis factor superfamily (TNFSF4&18), showed noteworthy association with the disease severity and outcome for the COVID-19 patients in the western Indian population. The markers found with significant association with disease prognosis or recovery are of value in determining the individual's response to SARS-CoV-2 infection and can be used for the risk prediction in COVID-19. Besides, GWAS study in other populations from India may help to strengthen the outcome of this study.


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , Alelos , Pueblo Asiatico , COVID-19/diagnóstico , COVID-19/genética , Humanos , India , Ligando OX40/genética , SARS-CoV-2 , Factores de Necrosis Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA