Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.943
Filtrar
1.
Breast Cancer Res ; 26(1): 111, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965614

RESUMEN

BACKGROUND: Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS: We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS: We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS: We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Receptores Androgénicos , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Dihidrotestosterona/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Nitrilos/uso terapéutico , Genotipo , Farmacogenética/métodos , Variantes Farmacogenómicas , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Benzamidas
2.
Aust J Gen Pract ; 53(7): 463-470, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38957060

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) pose significant global health challenges, with genetics increasingly recognised as a key factor alongside traditional risk factors. This presents an opportunity for general practitioners (GPs) to refine their approaches. OBJECTIVE: This article explores the impact of genetics on CVDs and its implications for GPs. It discusses monogenic disorders like inherited cardiomyopathies and polygenic risks, as well as pharmacogenetics, aiming to enhance risk assessment and personalised care. DISCUSSION: Monogenic disorders, driven by single gene mutations, exhibit predictable inheritance patterns, including inherited cardiomyopathies and channelopathies such as Long QT syndrome. Polygenic risks involve multiple genetic variants influencing CVD susceptibility, addressed through polygenic risk scores for precise risk assessment. Pharmacogenetics tailor drug interventions based on genetic profiles, though challenges like accessibility and ethical considerations persist. Integrating genetics into cardiovascular care holds promise for alleviating the global CVD burden and improving patient outcomes.


Asunto(s)
Médicos Generales , Humanos , Médicos Generales/tendencias , Cardiopatías/genética , Predisposición Genética a la Enfermedad , Farmacogenética/métodos , Farmacogenética/tendencias , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Medición de Riesgo/métodos , Factores de Riesgo
3.
Hum Genomics ; 18(1): 78, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987819

RESUMEN

Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.


Asunto(s)
Farmacogenética , Humanos , Italia , Farmacogenética/métodos , Farmacogenética/tendencias , Medicina de Precisión/tendencias , Medicina de Precisión/métodos , Pruebas de Farmacogenómica/métodos , Genotipo
4.
Pharmacol Res ; 205: 107247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834164

RESUMEN

About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.


Asunto(s)
Epigénesis Genética , Enfermedades Neurodegenerativas , Farmacogenética , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Farmacogenética/métodos , Epigénesis Genética/efectos de los fármacos , Animales , Epigenómica/métodos
5.
Pharmacogenomics J ; 24(4): 19, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890281

RESUMEN

Nimodipine, an L-type cerebroselective calcium channel antagonist, is the only drug approved by the US Food and Drug Administration for the neuroprotection of patients with aneurysmal subarachnoid hemorrhage (aSAH). Four randomized, placebo-controlled trials of nimodipine demonstrated clinical improvement over placebo; however, these occurred before precision medicine with pharmacogenomics was readily available. The standard enteral dose of nimodipine recommended after aSAH is 60 mg every 4 h. However, up to 78% of patients with aSAH develop systemic arterial hypotension after taking the drug at the recommended dose, which could theoretically limit its neuroprotective role and worsen cerebral perfusion pressure and cerebral blood flow, particularly when concomitant vasospasm is present. We investigated the association between nimodipine dose changes and clinical outcomes in a consecutive series of 150 patients (mean age, 56 years; 70.7% women) with acute aSAH. We describe the pharmacogenomic relationship of nimodipine dose reduction with clinical outcomes. These results have major implications for future individualized dosing of nimodipine in the era of precision medicine.


Asunto(s)
Bloqueadores de los Canales de Calcio , Nimodipina , Farmacogenética , Hemorragia Subaracnoidea , Humanos , Nimodipina/administración & dosificación , Nimodipina/efectos adversos , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/complicaciones , Persona de Mediana Edad , Femenino , Masculino , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/efectos adversos , Bloqueadores de los Canales de Calcio/uso terapéutico , Anciano , Farmacogenética/métodos , Resultado del Tratamiento , Relación Dosis-Respuesta a Droga , Adulto , Medicina de Precisión/métodos , Vasoespasmo Intracraneal/tratamiento farmacológico
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892112

RESUMEN

This review emphasises the importance of opioid monitoring in clinical practice and advocates for a personalised approach based on pharmacogenetics. Beyond effectively managing pain, meticulous oversight is required to address concerns about side effects, specially due to opioid-crisis-related abuse and dependence. Various monitoring techniques, along with pharmacogenetic considerations, are critical for personalising treatment and optimising pain relief while reducing misuse and addiction risks. Future perspectives reveal both opportunities and challenges, with advances in analytical technologies holding promise for increasing monitoring efficiency. The integration of pharmacogenetics has the potential to transform pain management by allowing for a precise prediction of drug responses. Nevertheless, challenges such as prominent pharmacogenetic testing and guideline standardisation persist. Collaborative efforts are critical for transforming scientific advances into tangible improvements in patient care. Standardised protocols and interdisciplinary collaboration are required to ensure consistent and evidence-based opioid monitoring. Future research should look into the long-term effects of opioid therapy, as well as the impact of genetic factors on individual responses, to help guide personalised treatment plans and reduce adverse events. Lastly, embracing innovation and collaboration can improve the standard of care in chronic pain management by striking a balance between pain relief and patient safety.


Asunto(s)
Analgésicos Opioides , Manejo del Dolor , Medicina de Precisión , Humanos , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/efectos adversos , Medicina de Precisión/métodos , Manejo del Dolor/métodos , Monitoreo de Drogas/métodos , Dolor Crónico/tratamiento farmacológico , Farmacogenética/métodos , Trastornos Relacionados con Opioides
7.
Genes (Basel) ; 15(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38927650

RESUMEN

Over the last few decades, the implementation of pharmacogenomics (PGx) in clinical practice has improved tailored drug prescriptions [...].


Asunto(s)
Farmacogenética , Medicina de Precisión , Farmacogenética/métodos , Humanos , Medicina de Precisión/métodos
8.
Pharmacogenomics J ; 24(3): 18, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824169

RESUMEN

The aim was to determine if opioid neuroimmunopharmacology pathway gene polymorphisms alter serum morphine, morphine-3-glucuronide and morphine-6-glucuronide concentration-response relationships in 506 cancer patients receiving controlled-release oral morphine. Morphine-3-glucuronide concentrations (standardised to 11 h post-dose) were higher in patients without pain control (median (interquartile range) 1.2 (0.7-2.3) versus 1.0 (0.5-1.9) µM, P = 0.006), whereas morphine concentrations were higher in patients with cognitive dysfunction (40 (20-81) versus 29 (14-60) nM, P = 0.02). TLR2 rs3804100 variant carriers had reduced odds (adjusted odds ratio (95% confidence interval) 0.42 (0.22-0.82), P = 0.01) of opioid adverse events. IL2 rs2069762 G/G (0.20 (0.06-0.52)), BDNF rs6265 A/A (0.15 (0.02-0.63)) and IL6R rs8192284 carrier (0.55 (0.34-0.90)) genotypes had decreased, and IL6 rs10499563 C/C increased (3.3 (1.2-9.3)), odds of sickness response (P ≤ 0.02). The study has limitations in heterogeneity in doses, sampling times and diagnoses but still suggests that pharmacokinetics and immune genetics co-contribute to morphine pain control and adverse effects in cancer patients.


Asunto(s)
Analgésicos Opioides , Dolor en Cáncer , Preparaciones de Acción Retardada , Morfina , Farmacogenética , Humanos , Morfina/efectos adversos , Morfina/farmacocinética , Morfina/administración & dosificación , Masculino , Femenino , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/genética , Persona de Mediana Edad , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Anciano , Farmacogenética/métodos , Polimorfismo de Nucleótido Simple/genética , Derivados de la Morfina/farmacocinética , Derivados de la Morfina/efectos adversos , Adulto , Variantes Farmacogenómicas , Receptor Toll-Like 2/genética
9.
Clin Transl Sci ; 17(6): e13830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853370

RESUMEN

Computational methods analyze genomic data to identify genetic variants linked to drug responses, thereby guiding personalized medicine. This study analyzed 942 whole-genome sequences from the Electricity Generating Authority of Thailand (EGAT) cohort to establish a population-specific pharmacogenomic database (TPGxD-1) in the Thai population. Sentieon (version 201808.08) implemented the GATK best workflow practice for variant calling. We then annotated variant call format (VCF) files using Golden Helix VarSeq 2.5.0 and employed Stargazer v2.0.2 for star allele analysis. The analysis of 63 very important pharmacogenes (VIPGx) reveals 85,566 variants, including 13,532 novel discoveries. Notably, we identified 464 known PGx variants and 275 clinically relevant novel variants. The phenotypic prediction of 15 VIPGx demonstrated a varied metabolic profile for the Thai population. Genes like CYP2C9 (9%), CYP3A5 (45.2%), CYP2B6 (9.4%), NUDT15 (15%), CYP2D6 (47%) and CYP2C19 (43%) showed a high number of intermediate metabolizers; CYP3A5 (41%), and CYP2C19 (9.9%) showed more poor metabolizers. CYP1A2 (52.7%) and CYP2B6 (7.6%) were found to have a higher number of ultra-metabolizers. The functional prediction of the remaining 10 VIPGx genes reveals a high frequency of decreased functional alleles in SULT1A1 (12%), NAT2 (84%), and G6PD (12%). SLCO1B1 reports 20% poor functional alleles, while PTGIS (42%), SLCO1B1 (4%), and TPMT (5.96%) showed increased functional alleles. This study discovered new variants and alleles in the 63 VIPGx genes among the Thai population, offering insights into advancing clinical pharmacogenomics (PGx). However, further validation is needed using other computational and genotyping methods.


Asunto(s)
Farmacogenética , Fenotipo , Secuenciación Completa del Genoma , Humanos , Tailandia , Secuenciación Completa del Genoma/métodos , Farmacogenética/métodos , Bases de Datos Genéticas , Variantes Farmacogenómicas , Masculino , Femenino , Alelos , Pueblos del Sudeste Asiático
10.
Clin Transl Sci ; 17(6): e13868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924657

RESUMEN

Next-generation sequencing (NGS) significantly enhances precision medicine (PM) by offering personalized approaches to diagnosis, treatment, and prevention of unmet medical needs. Little is known about the current situation of PM in Asia. Thus, we aimed to conduct an overview of the progress and gaps in PM in Asia and enrich it with in-depth insight into the possibilities of future PM in Thailand. This scoping review focused on Asian countries starting with non-cancer studies, including rare and undiagnosed diseases (RUDs), non-communicable diseases (NCDs), infectious diseases (IDs), and pharmacogenomics, with a focus on NGS. Subsequent in-depth interviews with experts in Thailand were performed, and a thematic analysis served as the main qualitative methodology. Out of 2898 searched articles, 387 studies were included after the review. Although most of the studies focused on cancer, 89 (23.0%) studies were related to RUDs (17.1%), NCDs (2.8%), IDs (1.8%), and pharmacogenomics (1.3%). Apart from medicine and related sciences, the studies were mostly composed of PM (61.8%), followed by genetics medicine and bioinformatics. Interestingly, 28% of articles were conducted exclusively within the fields of medicine and related sciences, emphasizing interdisciplinary integration. The experts emphasized the need for sustainability-driven political will, nurturing collaboration, reinforcing computational infrastructure, and expanding the bioinformatic workforce. In Asia, developments of NGS have made remarkable progress in PM. Thailand has extended PM beyond cancer and focused on clinical implementation. We summarized the PM challenges, including equity and efficiency targeting, guided research funding, sufficient sample size, integrated collaboration, computational infrastructure, and sufficient trained human resources.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Tailandia , Farmacogenética/métodos , Entrevistas como Asunto , Neoplasias/genética , Neoplasias/diagnóstico
11.
Pharmacogenomics J ; 24(3): 17, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802404

RESUMEN

Lack of efficacy or adverse drug response are common phenomena in pharmacological therapy causing considerable morbidity and mortality. It is estimated that 20-30% of this variability in drug response stems from variations in genes encoding drug targets or factors involved in drug disposition. Leveraging such pharmacogenomic information for the preemptive identification of patients who would benefit from dose adjustments or alternative medications thus constitutes an important frontier of precision medicine. Computational methods can be used to predict the functional effects of variant of unknown significance. However, their performance on pharmacogenomic variant data has been lackluster. To overcome this limitation, we previously developed an ensemble classifier, termed APF, specifically designed for pharmacogenomic variant prediction. Here, we aimed to further improve predictions by leveraging recent key advances in the prediction of protein folding based on deep neural networks. Benchmarking of 28 variant effect predictors on 530 pharmacogenetic missense variants revealed that structural predictions using AlphaMissense were most specific, whereas APF exhibited the most balanced performance. We then developed a new tool, APF2, by optimizing algorithm parametrization of the top performing algorithms for pharmacogenomic variations and aggregating their predictions into a unified ensemble score. Importantly, APF2 provides quantitative variant effect estimates that correlate well with experimental results (R2 = 0.91, p = 0.003) and predicts the functional impact of pharmacogenomic variants with higher accuracy than previous methods, particularly for clinically relevant variations with actionable pharmacogenomic guidelines. We furthermore demonstrate better performance (92% accuracy) on an independent test set of 146 variants across 61 pharmacogenes not used for model training or validation. Application of APF2 to population-scale sequencing data from over 800,000 individuals revealed drastic ethnogeographic differences with important implications for pharmacotherapy. We thus think that APF2 holds the potential to improve the translation of genetic information into pharmacogenetic recommendations, thereby facilitating the use of Next-Generation Sequencing data for stratified medicine.


Asunto(s)
Farmacogenética , Variantes Farmacogenómicas , Humanos , Farmacogenética/métodos , Variantes Farmacogenómicas/genética , Medicina de Precisión/métodos , Algoritmos , Biología Computacional/métodos
12.
Pharmacogenomics J ; 24(3): 16, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778046

RESUMEN

Pharmacogenomics (PGx) research and applications are of utmost relevance in Lebanon considering its population genetic diversity. Moreover, as a country with regional leadership in medicine and higher education, Lebanon holds a strong potential in contributing to PGx research and clinical implementation. In this manuscript, we first review and evaluate the available PGx research conducted in Lebanon, then describe the current status of PGx practice in Lebanon while reflecting on the local and regional challenges, and highlighting areas for action, and opportunities to move forward. We specifically expand on the status of PGx at the American University of Beirut Faculty of Medicine and Medical Center as a case study and guide for the further development of local and regional comprehensive PGx research, teaching, and clinical implementation programs. We also delve into the status of PGx knowledge and education, and prospects for further advancement such as with online courses and certificates.


Asunto(s)
Farmacogenética , Líbano , Humanos , Farmacogenética/educación , Farmacogenética/métodos , Farmacogenética/tendencias , Medicina de Precisión/métodos
13.
NPJ Syst Biol Appl ; 10(1): 62, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816426

RESUMEN

Individual may response to drug treatment differently due to their genetic variants located in enhancers. These variants can alter transcription factor's (TF) binding strength, affect enhancer's chromatin activity or interaction, and eventually change expression level of downstream gene. Here, we propose a computational framework, PERD, to Predict the Enhancers Responsive to Drug. A machine learning model was trained to predict the genome-wide chromatin accessibility from transcriptome data using the paired expression and chromatin accessibility data collected from ENCODE and ROADMAP. Then the model was applied to the perturbed gene expression data from Connectivity Map (CMAP) and Cancer Drug-induced gene expression Signature DataBase (CDS-DB) and identify drug responsive enhancers with significantly altered chromatin accessibility. Furthermore, the drug responsive enhancers were related to the pharmacogenomics genome-wide association studies (PGx GWAS). Stepping on the traditional drug-associated gene signatures, PERD holds the promise to enhance the causality of drug perturbation by providing candidate regulatory element of those drug associated genes.


Asunto(s)
Cromatina , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Cromatina/genética , Cromatina/efectos de los fármacos , Humanos , Estudio de Asociación del Genoma Completo/métodos , Elementos de Facilitación Genéticos/genética , Biología Computacional/métodos , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos , Farmacogenética/métodos
14.
Clin Transl Sci ; 17(6): e13800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38818903

RESUMEN

Pharmacogenetic (PGx)-informed medication prescription is a cutting-edge genomic application in contemporary medicine, offering the potential to overcome the conventional "trial-and-error" approach in drug prescription. The ability to use an individual's genetic profile to predict drug responses allows for personalized drug and dosage selection, thereby enhancing the safety and efficacy of treatments. However, despite significant scientific and clinical advancements in PGx, its integration into routine healthcare practices remains limited. To address this gap, the Qatar Genome Program (QGP) has embarked on an ambitious initiative known as QPGx-CARES (Qatar Pharmacogenetics Clinical Applications and Research Enhancement Strategies), which aims to set a roadmap for optimizing PGx research and clinical implementation on a national scale. The goal of QPGx-CARES initiative is to integrate PGx testing into clinical settings with the aim of improving patient health outcomes. In 2022, QGP initiated several implementation projects in various clinical settings. These projects aimed to evaluate the clinical utility of PGx testing, gather valuable insights into the effective dissemination of PGx data to healthcare professionals and patients, and identify the gaps and the challenges for wider adoption. QPGx-CARES strategy aimed to integrate evidence-based PGx findings into clinical practice, focusing on implementing PGx testing for cardiovascular medications, supported by robust scientific evidence. The current initiative sets a precedent for the nationwide implementation of precision medicine across diverse clinical domains.


Asunto(s)
Farmacogenética , Medicina de Precisión , Humanos , Qatar , Farmacogenética/métodos , Medicina de Precisión/métodos , Pruebas de Farmacogenómica
15.
Biomed Pharmacother ; 175: 116678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713940

RESUMEN

BACKGROUND: Current treatments for chronic hepatitis B management include orally administered nucleos(t)ide analogues, such as tenofovir (TDF), which is an acyclic adenine nucleotide analogue used both in HBV and human immune deficiency virus (HIV). The course of HBV infection is mainly dependent on viral factors, such as HBV genotypes, immunological features and host genetic variables, but a few data are available in the context of HBV, in particular for polymorphisms of genes encoding proteins involved in drug metabolism and elimination. Consequently, the aim of this study was to evaluate the potential impact of genetic variants on TDF plasma and urine concentrations in patients with HBV, considering the role of HBV genotypes. METHODS: A retrospective cohort study at the Infectious Disease Unit of Amedeo di Savoia Hospital, Torino, Italy, was performed. Pharmacokinetic analyses were performed through liquidi chromatography, whereas pharmacogenetic analyses through real-time PCR. FINDINGS: Sixty - eight patients were analyzed: ABCC4 4976 C>T genetic variant showed an impact on urine TDF drug concentrations (p = 0.014). In addition, SLC22A6 453 AA was retained in the final regression multivariate model considering factors predicting plasma concentrations, while ABCC4 4976 TC/CC was the only predictor of urine concentrations in the univariate model. INTERPRETATION: In conclusion, this is the first study showing a potential impact of genetic variants on TDF plasma and urine concentrations in the HBV context, but further studies in different and larger cohorts of patients are required.


Asunto(s)
Virus de la Hepatitis B , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Farmacogenética , Tenofovir , Humanos , Tenofovir/uso terapéutico , Tenofovir/farmacocinética , Masculino , Femenino , Estudios Retrospectivos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Persona de Mediana Edad , Farmacogenética/métodos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Adulto , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis B Crónica/genética , Antivirales/farmacocinética , Antivirales/uso terapéutico , Antivirales/orina , Genotipo , Estudios de Cohortes , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Polimorfismo de Nucleótido Simple/genética
16.
Cell Mol Neurobiol ; 44(1): 47, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801645

RESUMEN

Considering the variability in individual responses to opioids and the growing concerns about opioid addiction, prescribing opioids for postoperative pain management after spine surgery presents significant challenges. Therefore, this study undertook a novel pharmacogenomics-based in silico investigation of FDA-approved opioid medications. The DrugBank database was employed to identify all FDA-approved opioids. Subsequently, the PharmGKB database was utilized to filter through all variant annotations associated with the relevant genes. In addition, the dpSNP ( https://www.ncbi.nlm.nih.gov/snp/ ), a publicly accessible repository, was used. Additional analyses were conducted using STRING-MODEL (version 12), Cytoscape (version 3.10.1), miRTargetLink.2, and NetworkAnalyst (version 3). The study identified 125 target genes of FDA-approved opioids, encompassing 7019 variant annotations. Of these, 3088 annotations were significant and pertained to 78 genes. During variant annotation assessments (VAA), 672 variants remained after filtration. Further in-depth filtration based on variant functions yielded 302 final filtered variants across 56 genes. The Monoamine GPCRs pathway emerged as the most significant signaling pathway. Protein-protein interaction (PPI) analysis revealed a fully connected network comprising 55 genes. Gene-miRNA Interaction (GMI) analysis of these 55 candidate genes identified miR-16-5p as a pivotal miRNA in this network. Protein-Drug Interaction (PDI) assessment showed that multiple drugs, including Ibuprofen, Nicotine, Tramadol, Haloperidol, Ketamine, L-Glutamic Acid, Caffeine, Citalopram, and Naloxone, had more than one interaction. Furthermore, Protein-Chemical Interaction (PCI) analysis highlighted that ABCB1, BCL2, CYP1A2, KCNH2, PTGS2, and DRD2 were key targets of the proposed chemicals. Notably, 10 chemicals, including carbamylhydrazine, tetrahydropalmatine, Terazosin, beta-methylcholine, rubimaillin, and quinelorane, demonstrated dual interactions with the aforementioned target genes. This comprehensive review offers multiple strong, evidence-based in silico findings regarding opioid prescribing in spine pain management, introducing 55 potential genes. The insights from this report can be applied in exome analysis as a pharmacogenomics (PGx) panel for pain susceptibility, facilitating individualized opioid prescribing through genotyping of related variants. The article also points out that African Americans represent an important group that displays a high catabolism of opioids and suggest the need for a personalized therapeutic approach based on genetic information.


Asunto(s)
Analgésicos Opioides , Simulación por Computador , Manejo del Dolor , Dolor Postoperatorio , Farmacogenética , Medicina de Precisión , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/genética , Medicina de Precisión/métodos , Analgésicos Opioides/uso terapéutico , Farmacogenética/métodos , Manejo del Dolor/métodos , Columna Vertebral/cirugía , Columna Vertebral/efectos de los fármacos
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673849

RESUMEN

In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of ß-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.


Asunto(s)
Anemia de Células Falciformes , Farmacogenética , Talasemia beta , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/tratamiento farmacológico , Farmacogenética/métodos , Hemoglobina Fetal/genética , gamma-Globinas/genética , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/farmacología
19.
Am J Psychiatry ; 181(7): 591-607, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685859

RESUMEN

OBJECTIVE: In this review, the authors update the 2018 position statement of the American Psychiatric Association Council of Research Workgroup on Biomarkers and Novel Treatments on pharmacogenomic (PGx) tools for treatment selection in depression. METHODS: The literature was reviewed for new clinical trials and meta-analyses, published from 2017 to 2022, of studies using PGx tools for treatment selection in depression. The blinding and control conditions, as well as primary and secondary outcomes and post hoc analyses, were summarized. RESULTS: Eleven new clinical trials and five meta-analyses were identified; all studies had primary outcome measures related to speed or efficacy of treatment response. Three trials (27%) demonstrated efficacy on the primary outcome measure with statistical significance; the three studies used different PGx tools; one study was open-label and the other two were small single-blind trials. Five trials (45%) did not detect efficacy with statistical significance on either primary or secondary outcome measures. Only one trial (9%) used adverse events as a primary outcome measure. All studies had significant limitations; for example, none adopted a fully blinded study design, only two studies attempted to blind the treating clinician, and none incorporated measures to estimate the effectiveness of the blinds or the influence of lack of blinding on the study results. CONCLUSIONS: The addition of these new data do not alter the recommendations of the 2018 report, or the advice of the U.S. Food and Drug Administration, that the evidence does not support the use of currently available combinatorial PGx tools for treatment selection in major depressive disorder. Priority efforts for future studies and the development and testing of effective tools include fully blinded study designs, inclusion of promising genetic variants not currently included in any commercially available tests, and investigation of other uses of pharmacogenomics, such as estimating the likelihood of rare adverse drug effects, rather than increasing the speed or magnitude of drug response.


Asunto(s)
Farmacogenética , Humanos , Farmacogenética/métodos , Antidepresivos/uso terapéutico , Ensayos Clínicos como Asunto , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/genética , Pruebas de Farmacogenómica/métodos
20.
Genes (Basel) ; 15(4)2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38674402

RESUMEN

In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Farmacogenética , Medicina de Precisión , Medicina de Precisión/métodos , Humanos , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Farmacogenética/métodos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA