Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135.179
Filtrar
1.
PLoS One ; 19(5): e0293691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753603

RESUMEN

Capturing human locomotion in nearly any environment or context is becoming increasingly feasible with wearable sensors, giving access to commonly encountered walking conditions. While important in expanding our understanding of locomotor biomechanics, these more variable environments present challenges to identify changes in data due to person-level factors among the varying environment-level factors. Our study examined foot-specific biomechanics while walking on terrain commonly encountered with the goal of understanding the extent to which these variables change due to terrain. We recruited healthy adults to walk at self-selected speeds on stairs, flat ground, and both shallow and steep sloped terrain. A pair of inertial measurement units were embedded in both shoes to capture foot biomechanics while walking. Foot orientation was calculated using a strapdown procedure and foot trajectory was determined by double integrating the linear acceleration. Stance time, swing time, cadence, sagittal and frontal orientations, stride length and width were extracted as discrete variables. These data were compared within-participant and across terrain conditions. The physical constraints of the stairs resulted in shorter stride lengths, less time spent in swing, toe-first foot contact, and higher variability during stair ascent specifically (p<0.05). Stride lengths increased when ascending compared to descending slopes, and the sagittal foot angle at initial contact was greatest in the steep slope descent condition (p<0.05). No differences were found between conditions for horizontal foot angle in midstance (p≥0.067). Our results show that walking on slopes creates differential changes in foot biomechanics depending on whether one is descending or ascending, and stairs require different biomechanics and gait timing than slopes or flat ground. This may be an important factor to consider when making comparisons of real-world walking bouts, as greater proportions of one terrain feature in a data set could create bias in the outcomes. Classifying terrain in unsupervised walking datasets would be helpful to avoid comparing metrics from different walking terrain scenarios.


Asunto(s)
Pie , Locomoción , Caminata , Humanos , Pie/fisiología , Masculino , Adulto , Femenino , Fenómenos Biomecánicos , Caminata/fisiología , Locomoción/fisiología , Marcha/fisiología , Adulto Joven
2.
PLoS One ; 19(5): e0302898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753715

RESUMEN

Trapeziometacarpal osteoarthritis (TMC-OA) reduces the range of motion (ROM) of the thumb. However, the kinematic change achieved through surgical treatment remains unclear. Therefore, to quantify the kinematic change following TMC-OA surgery, we performed a three-dimensional motion analysis of the thumb using an optical motion capture system preoperatively and 1 year postoperatively in 23 patients with TMC-OA scheduled for arthrodesis (AD) or trapeziectomy with suspensionplasty (TS). Eighteen hands of nine healthy volunteers were also included as controls. Both procedures improved postoperative pain and Disability of the Arm, Shoulder and Hand scores, and AD increased pinch strength. The ROM of the base of the thumb was preserved in AD, which was thought to be due to the appearance of compensatory movements of adjacent joints even if the ROM of the TMC joint was lost. TS did not improve ROM. Quantifying thumb kinematic changes following TMC-OA surgery can improve our understanding of TMC-OA treatment and help select surgical procedures and postoperative assessment.


Asunto(s)
Artrodesis , Osteoartritis , Rango del Movimiento Articular , Pulgar , Hueso Trapecio , Humanos , Osteoartritis/cirugía , Osteoartritis/fisiopatología , Femenino , Pulgar/cirugía , Pulgar/fisiopatología , Masculino , Persona de Mediana Edad , Artrodesis/métodos , Anciano , Hueso Trapecio/cirugía , Hueso Trapecio/fisiopatología , Fenómenos Biomecánicos , Articulaciones Carpometacarpianas/cirugía , Articulaciones Carpometacarpianas/fisiopatología , Movimiento , Adulto , Periodo Posoperatorio
3.
Artículo en Inglés | MEDLINE | ID: mdl-38758669

RESUMEN

BACKGROUND: Socks are mainly used to give the foot more comfort while wearing shoes. Stitch density of the knitted fabric used in socks can significantly affect the sock properties because it is one of the most important fabric structural factors influencing the mechanical properties. Continuous plantar pressures can cause serious damage, particularly under the metatarsal heads, and it is deduced that using socks redistributes and reduces peak plantar pressures. If peak pressure under the metatarsal heads is predicted, then it will be possible to produce socks with the best mechanical properties to reduce the pressure in these critical areas. METHODS: Plain knitted socks with three different stitch lengths (high, medium, and low) were produced. Static plantar pressure measurements by the Gaitview system were accomplished on ten women and then compared with the barefoot situation. Also, the peak plantar pressure of three types of socks under the metatarsal heads are theoretically predicted using the Hertz contact theory. RESULTS: Experimental results indicate that all socks redistribute the plantar pressure from high to low plantar pressure regions compared with barefoot. In particular, socks with high stitch length have the best performance. By increasing the stitch length, we can significantly reduce the peak plantar pressure of the socks. Correspondingly, the Hertz contact theory resulted in a trend of mean peak pressure reductions in the forefoot region similar to the socks with different stitch densities. CONCLUSIONS: The theoretical results show that by using the Hertz contact theory, static plantar pressure in the forefoot region can be well predicted at a mean error of approximately 9% compared with the other experimental findings.


Asunto(s)
Pie , Presión , Humanos , Femenino , Pie/fisiología , Adulto , Fenómenos Biomecánicos , Vestuario , Zapatos , Soporte de Peso/fisiología , Adulto Joven
4.
BMC Musculoskelet Disord ; 25(1): 397, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773452

RESUMEN

BACKGROUND: This study aimed to evaluate the biomechanical effects of reinserted or revised subaxial cervical vertebral screws. METHODS: The first part aimed to gauge the maximum insertional torque (MIT) of 30 subaxial cervical vertebrae outfitted with 4.0-mm titanium screws. A reinsertion group was created wherein a screw was wholly removed and replaced along the same trajectory to test its maximum pullout strength (MPOS). A control group was also implemented. The second part involved implanting 4.0-mm titanium screws into 20 subaxial cervical vertebrae, testing them to failure, and then reinserting 4.5-mm revision screws along the same path to determine and compare the MIT and MPOS between the test and revision groups. RESULTS: Part I findings: No significant difference was observed in the initial insertion's maximum insertion torque (MIT) and maximum pull-out strength (MPOS) between the control and reinsertion groups. However, the MIT of the reinsertion group was substantially decreased compared to the first insertion. Moderate to high correlations were observed between the MIT and MPOS in both groups, as well as between the MIT of the first and second screw in the reinsertion group. Part II, the MIT and MPOS of the screw in the test group showed a strong correlation, while a modest correlation was observed for the revision screw used in failed cervical vertebrae screw. Additionally, the MPOS of the screw in the test group was significantly higher than that of the revision screw group. CONCLUSION: This study suggests that reinsertion of subaxial cervical vertebrae screws along the same trajectory is a viable option that does not significantly affect fixation stability. However, the use of 4.5-mm revision screws is inadequate for failed fixation cases with 4.0-mm cervical vertebral screws.


Asunto(s)
Tornillos Óseos , Vértebras Cervicales , Torque , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Humanos , Fenómenos Biomecánicos , Masculino , Femenino , Reoperación , Fusión Vertebral/instrumentación , Fusión Vertebral/métodos , Persona de Mediana Edad , Adulto , Anciano , Titanio , Ensayo de Materiales
5.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774960

RESUMEN

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Miosinas , Animales , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología , Actinas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Sarcómeros/fisiología , Fenómenos Biomecánicos
6.
BMC Musculoskelet Disord ; 25(1): 400, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773411

RESUMEN

OBJECTIVE: Muscle dysfunction caused by repetitive work or strain in the neck region can interfere muscle responses. Muscle dysfunction can be an important factor in causing cervical spondylosis. However, there has been no research on how the biomechanical properties of the upper cervical spine change when the suboccipital muscle group experiences dysfunction. The objective of this study was to investigate the biomechanical evidence for cervical spondylosis by utilizing the finite element (FE) approach, thus and to provide guidance for clinicians performing acupoint therapy. METHODS: By varying the elastic modulus of the suboccipital muscle, the four FE models of C0-C3 motion segments were reconstructed under the conditions of normal muscle function and muscle dysfunction. For the two normal condition FE models, the elastic modulus for suboccipital muscles on both sides of the C0-C3 motion segments was equal and within the normal range In one muscle dysfunction FE model, the elastic modulus on both sides was equal and greater than 37 kPa, which represented muscle hypertonia; in the other, the elastic modulus of the left and right suboccipital muscles was different, indicating muscle imbalance. The biomechanical behavior of the lateral atlantoaxial joint (LAAJ), atlanto-odontoid joint (ADJ), and intervertebral disc (IVD) was analyzed by simulations, which were carried out under the six loadings of flexion, extension, left and right lateral bending, left and right axial rotation. RESULTS: Under flexion, the maximum stress in LAAJ with muscle imbalance was higher than that with normal muscle and hypertonia, while the maximum stress in IVD in the hypertonic model was higher than that in the normal and imbalance models. The maximum stress in ADJ was the largest under extension among all loadings for all models. Muscle imbalance and hypertonia did not cause overstress and stress distribution abnormalities in ADJ. CONCLUSION: Muscle dysfunction increases the stress in LAAJ and in IVD, but it does not affect ADJ.


Asunto(s)
Vértebras Cervicales , Análisis de Elementos Finitos , Humanos , Fenómenos Biomecánicos , Vértebras Cervicales/fisiopatología , Espondilosis/fisiopatología , Músculos del Cuello/fisiopatología , Módulo de Elasticidad , Rango del Movimiento Articular/fisiología , Articulación Atlantoaxoidea/fisiopatología , Hipertonía Muscular/fisiopatología , Hipertonía Muscular/etiología
7.
Invest Ophthalmol Vis Sci ; 65(5): 34, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776117

RESUMEN

Purpose: A thin cornea is a potent risk factor for glaucoma. The underlying mechanisms remain unexplained. It has been postulated that central corneal thickness (CCT) may be a surrogate for biomechanical parameters of the posterior eye. In this study, we aimed to explore correlations of biomechanical responses between the cornea and the optic nerve head (ONH) and the peripapillary sclera (PPS) to elevated intraocular pressure (IOP), the primary risk factor of glaucoma. Methods: Inflation tests were performed in nine pairs of human donor globes. One eye of each pair was randomly assigned for cornea or posterior eye inflation. IOP was raised from 5 to 30 millimeters of mercury (mmHg) at 0.5 mmHg steps in the whole globe and the cornea or the ONH/PPS was imaged using a 50 MHz ultrasound probe. Correlation-based ultrasound speckle tracking was used to calculate tissue displacements and strains. Associations of radial, tangential, and shear strains at 30 mmHg between the cornea and the ONH or PPS were evaluated. Results: Corneal shear strain was significantly correlated with ONH shear strain (R = 0.857, P = 0.003) and PPS shear strain (R = 0.724, P = 0.028). CCT was not correlated with any strains in the cornea, ONH, or PPS. Conclusions: Our results suggested that an eye that experiences a larger shear strain in the cornea would likely experience a larger shear strain in its ONH and PPS at IOP elevations. The strong correlation between the cornea's and the ONH's shear response to IOP provides new insights and suggests a plausible explanation of the cornea's connection to glaucoma risk.


Asunto(s)
Córnea , Presión Intraocular , Disco Óptico , Humanos , Disco Óptico/diagnóstico por imagen , Córnea/diagnóstico por imagen , Córnea/fisiología , Presión Intraocular/fisiología , Fenómenos Biomecánicos/fisiología , Anciano , Persona de Mediana Edad , Esclerótica/fisiología , Esclerótica/diagnóstico por imagen , Masculino , Femenino , Glaucoma/fisiopatología , Anciano de 80 o más Años , Donantes de Tejidos , Adulto
8.
J Bodyw Mov Ther ; 38: 562-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38763609

RESUMEN

BACKGROUND: Basketball is a high-risk team sport for lower extremity injuries, with ankle sprains being the most common injury. Non-elastic tape is widely used in injury prevention and quick return to play after ankle sprains, but its impact on stiffness, particularly global stiffness, has not been thoroughly investigated. OBJECTIVES: The aim of this study was to investigate the effects of non-elastic ankle taping on vertical stiffness, among basketball players during the jump shot tasks; and to assess the reliability of accelerometers to evaluate vertical stiffness. DESIGN: Single group, repeated measures study. PARTICIPANTS: Thirty healthy semi-professional basketball players (15 males and 15 females) participated in the study. INTERVENTIONS: Vertical stiffness was compared among three conditions: 1) without taping, 2) while the non-elastic tape was applied to their ankles, and 3) after running while taped. Vertical stiffness was calculated from acceleration data using a mass-spring model. RESULTS: The result of a one-way repeated measures ANOVA showed that vertical stiffness was not significantly different between the three conditions (P = 0.162). Within-day and between-day reliability for average measurements were found to be high or very high. CONCLUSION: The findings showed that the vertical stiffness is unaffected by non-elastic taping. Therefore, while non-elastic tape can limit ankle range of motion, it may not have an impact on vertical stiffness, a global parameter which reflects the musculoskeletal performance. On the other hand, the high reliability of the stiffness variable supports the use of an accelerometer as a small portable instrument for outdoor sports measurements.


Asunto(s)
Cinta Atlética , Baloncesto , Humanos , Baloncesto/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Fenómenos Biomecánicos , Traumatismos del Tobillo/prevención & control , Reproducibilidad de los Resultados , Articulación del Tobillo/fisiología , Atletas
9.
Artículo en Inglés | MEDLINE | ID: mdl-38722723

RESUMEN

Quantifying muscle strength is an important measure in clinical settings; however, there is a lack of practical tools that can be deployed for routine assessment. The purpose of this study is to propose a deep learning model for ankle plantar flexion torque prediction from time-series mechanomyogram (MMG) signals recorded during isometric contractions (i.e., a similar form to manual muscle testing procedure in clinical practice) and to evaluate its performance. Four different deep learning models in terms of model architecture (based on a stacked bidirectional long short-term memory and dense layers) were designed with different combinations of the number of units (from 32 to 512) and dropout ratio (from 0.0 to 0.8), and then evaluated for prediction performance by conducting the leave-one-subject-out cross-validation method from the 10-subject dataset. As a result, the models explained more variance in the untrained test dataset as the error metrics (e.g., root-mean-square error) decreased and as the slope of the relationship between the measured and predicted joint torques became closer to 1.0. Although the slope estimates appear to be sensitive to an individual dataset, >70% of the variance in nine out of 10 datasets was explained by the optimal model. These results demonstrated the feasibility of the proposed model as a potential tool to quantify average joint torque during a sustained isometric contraction.


Asunto(s)
Articulación del Tobillo , Contracción Isométrica , Torque , Humanos , Contracción Isométrica/fisiología , Masculino , Adulto , Articulación del Tobillo/fisiología , Adulto Joven , Prueba de Estudio Conceptual , Aprendizaje Profundo , Algoritmos , Miografía/métodos , Fuerza Muscular/fisiología , Femenino , Músculo Esquelético/fisiología , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Fenómenos Biomecánicos
10.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715319

RESUMEN

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Asunto(s)
Pared Celular , Pared Celular/fisiología , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Desarrollo de la Planta/fisiología
11.
PLoS One ; 19(5): e0302996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718026

RESUMEN

The success rate of spinal fusion surgery is mainly determined by the fixation strength of the spinal bone anchors. This study explores the use of an L-shaped spinal bone anchor that is intended to establish a macro-shape lock with the posterior cortical layer of the vertebral body, thereby increasing the pull-out resistance of the anchor. The performance of this L-shaped anchor was evaluated in lumbar vertebra phantoms (L1-L5) across four distinct perpendicular orientations (lateral, medial, superior, and inferior). During the pull-out experiments, the pull-out force, and the displacement of the anchor with respect to the vertebra was measured which allowed the determination of the maximal pull-out force (mean: 123 N ± 25 N) and the initial pull-out force, the initial force required to start motion of the anchor (mean: 23 N ± 16 N). Notably, the maximum pull-out force was observed when the anchor engaged the cortical bone layer. The results demonstrate the potential benefits of utilising a spinal bone anchor featuring a macro-shape lock with the cortical bone layer to increase the pull-out force. Combining the macro shape-lock fixation method with the conventional pedicle screw shows the potential to significantly enhance the fixation strength of spinal bone anchors.


Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Humanos , Vértebras Lumbares/cirugía , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Tornillos Pediculares , Fenómenos Biomecánicos , Anclas para Sutura
12.
Sci Rep ; 14(1): 10579, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720014

RESUMEN

The complex dynamics of animal manoeuvrability in the wild is extremely challenging to study. The cheetah (Acinonyx jubatus) is a perfect example: despite great interest in its unmatched speed and manoeuvrability, obtaining complete whole-body motion data from these animals remains an unsolved problem. This is especially difficult in wild cheetahs, where it is essential that the methods used are remote and do not constrain the animal's motion. In this work, we use data obtained from cheetahs in the wild to present a trajectory optimisation approach for estimating the 3D kinematics and joint torques of subjects remotely. We call this approach kinetic full trajectory estimation (K-FTE). We validate the method on a dataset comprising synchronised video and force plate data. We are able to reconstruct the 3D kinematics with an average reprojection error of 17.69 pixels (62.94% PCK using the nose-to-eye(s) length segment as a threshold), while the estimates produce an average root-mean-square error of 171.3N ( ≈ 17.16% of peak force during stride) for the estimated ground reaction force when compared against the force plate data. While the joint torques cannot be directly validated against ground truth data, as no such data is available for cheetahs, the estimated torques agree with previous studies of quadrupeds in controlled settings. These results will enable deeper insight into the study of animal locomotion in a more natural environment for both biologists and roboticists.


Asunto(s)
Acinonyx , Acinonyx/fisiología , Animales , Fenómenos Biomecánicos , Imagenología Tridimensional , Locomoción/fisiología , Torque , Grabación en Video
13.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38722696

RESUMEN

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Asunto(s)
Crustáceos , Animales , Fenómenos Biomecánicos , Crustáceos/fisiología , Crustáceos/anatomía & histología , Metabolismo Energético , Conducta Predatoria/fisiología , Conducta Animal/fisiología , Grabación en Video
14.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726757

RESUMEN

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Asunto(s)
Fuerza de la Mordida , Maxilares , Animales , Fenómenos Biomecánicos , Maxilares/fisiología , Passeriformes/fisiología , Conducta Predatoria/fisiología , Pico/fisiología , Grabación en Video
15.
Sci Rep ; 14(1): 10808, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734763

RESUMEN

Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µÎµ), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for  both healthy and pathological femurs.


Asunto(s)
Fémur , Análisis de Elementos Finitos , Marcha , Estrés Mecánico , Humanos , Fémur/fisiología , Marcha/fisiología , Fenómenos Biomecánicos , Masculino , Adulto , Simulación por Computador , Femenino
16.
Bull Hosp Jt Dis (2013) ; 82(2): 146-153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739663

RESUMEN

Surgical management of the subscapularis tendon is critical to a successful outcome following anatomic total shoulder arthroplasty. However, the optimal surgical technique for adequate exposure of the glenohumeral joint while mini-mizing complications resulting from subscapularis tendon dysfunction continues to be controversial. Common surgical techniques for the management of the subscapularis tendon include tenotomy, peeling, sparing, and lesser tuberosity oste-otomy. Despite a number of published studies comparing these techniques, no consensus has been reached regarding optimal management. This article reviews the extensive literature on the biomechanical, radiologic, and clinical outcomes of each technique, including recently published comparison studies.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Articulación del Hombro , Humanos , Artroplastía de Reemplazo de Hombro/métodos , Artroplastía de Reemplazo de Hombro/efectos adversos , Articulación del Hombro/cirugía , Articulación del Hombro/fisiopatología , Articulación del Hombro/diagnóstico por imagen , Resultado del Tratamiento , Fenómenos Biomecánicos , Tenotomía/métodos , Recuperación de la Función , Tendones/cirugía , Rango del Movimiento Articular
17.
Sci Rep ; 14(1): 10421, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710897

RESUMEN

Humans move their hands toward precise positions, a skill supported by the coordination of multiple joint movements, even in the presence of inherent redundancy. However, it remains unclear how the central nervous system learns the relationship between redundant joint movements and hand positions when starting from scratch. To address this question, a virtual-arm reaching task was performed in which participants were required to move a cursor corresponding to the hand of a virtual arm to a target. The joint angles of the virtual arm were determined by the heights of the participants' fingers. The results demonstrated that the participants moved the cursor to the target straighter and faster in the late phase than they did in the initial phase of learning. This improvement was accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist joint. These findings suggest that the central nervous system selects a combination of multijoint movements that minimize motor effort while learning novel upper-limb kinematics.


Asunto(s)
Brazo , Aprendizaje , Movimiento , Humanos , Fenómenos Biomecánicos , Brazo/fisiología , Masculino , Aprendizaje/fisiología , Femenino , Movimiento/fisiología , Adulto , Adulto Joven , Desempeño Psicomotor/fisiología , Articulación de la Muñeca/fisiología
18.
J Orthop Surg Res ; 19(1): 280, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711149

RESUMEN

INTRODUCTION: The escalating incidence of anterior cruciate ligament (ACL) injuries, particularly among adolescents, is a pressing concern. The study of ACL biomechanics in this demographic presents challenges due to the scarcity of cadaveric specimens. This research endeavors to validate the adolescent porcine stifle joint as a fitting model for ACL studies. METHODS: We conducted experiments on 30 fresh porcine stifle knee joints. (Breed: Yorkshire, Weight: avg 90 lbs, Age Range: 2-4 months). They were stored at - 22 °C and a subsequent 24-h thaw at room temperature before being prepared for the experiment. These joints were randomly assigned to three groups. The first group served as a control and underwent only the load-to-failure test. The remaining two groups were subjected to 100 cycles, with forces of 300N and 520N, respectively. The load values of 300N and 520N correspond to three and five times the body weight (BW) of our juvenile porcine, respectively. RESULT: The 520N force demonstrated a higher strain than the 300N, indicating a direct correlation between ACL strain and augmented loads. A significant difference in load-to-failure (p = 0.014) was observed between non-cyclically loaded ACLs and those subjected to 100 cycles at 520N. Three of the ten samples in the 520N group failed before completing 100 cycles. The ruptured ACLs from these tests closely resembled adolescent ACL injuries in detachment patterns. ACL stiffness was also measured post-cyclical loading by applying force and pulling the ACL at a rate of 1 mm per sec. Moreover, ACL stiffness measurements decreased from 152.46 N/mm in the control group to 129.42 N/mm after 100 cycles at 300N and a more significant drop to 86.90 N/mm after 100 cycles at 520N. A one-way analysis of variance (ANOVA) and t-test were chosen for statistical analysis. CONCLUSIONS: The porcine stifle joint is an appropriate model for understanding ACL biomechanics in the skeletally immature demographic. The results emphasize the ligament's susceptibility to injury under high-impact loads pertinent to sports activities. The study advocates for further research into different loading scenarios and the protective role of muscle co-activation in ACL injury prevention.


Asunto(s)
Ligamento Cruzado Anterior , Rodilla de Cuadrúpedos , Soporte de Peso , Animales , Porcinos , Ligamento Cruzado Anterior/fisiología , Ligamento Cruzado Anterior/fisiopatología , Rodilla de Cuadrúpedos/fisiología , Rodilla de Cuadrúpedos/fisiopatología , Soporte de Peso/fisiología , Fenómenos Biomecánicos , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Estrés Mecánico , Técnicas In Vitro
19.
PLoS One ; 19(5): e0302778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713687

RESUMEN

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS: Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS: The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION: This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Tendones , Animales , Porcinos , Tendones/cirugía , Tendones/fisiología , Tendones/diagnóstico por imagen , Fenómenos Biomecánicos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Resistencia a la Tracción , Módulo de Elasticidad
20.
Sci Rep ; 14(1): 10435, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714737

RESUMEN

During takeoff and landing, birds bounce and grab with their legs and feet. In this paper,the lower limb structure of the bionic bird is designed with reference to the function of jumping and grasping, and the PID algorithm based on the development module of stm32 development board is used to speed control the lower limb driving element, so that the motor and the bishaft steering gear move with the rate change of sine wave. According to the speed of grasping response time and the size of grasping force, the structure of the bionic bird paw is designed. Based on the photosensitive sensor fixed in the geometric center of the foot, the grasping action of the lower limb mechanism is intelligently controlled. Finally, the kinematic verification of the lower limb structure is carried out by ADAMS. Experiments show that the foot structure with four toes and three toes is more conducive to maintaining the stability of the body while realizing the fast grasping function. In addition, it can effectively improve the push-lift ratio of the bionic ornithopter by adjusting the sinusoidal waveform rate of the motor speed.


Asunto(s)
Biónica , Aves , Animales , Aves/fisiología , Fenómenos Biomecánicos , Algoritmos , Diseño de Equipo , Vuelo Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA