Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.506
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925513

RESUMEN

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.


Asunto(s)
Alcaloides de Amaryllidaceae , Tetracloruro de Carbono , Células Estrelladas Hepáticas , Janus Quinasa 2 , Cirrosis Hepática , Fenantridinas , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Tetracloruro de Carbono/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Masculino , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Línea Celular
2.
Neuroscience ; 551: 177-184, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38823551

RESUMEN

Dopamine D1 receptor agonists improve spatial working memory, but their effects on temporal order memory, particularly prone to the effects of aging, have not been studied. Two D1 agonists, PF6256142 (PF) and 2-methyldihydrexidine (2MDHX), were examined for their effects in a rodent temporal order recognition task. Our results are consistent with the hypothesis that there is an age-related decline in rodent temporal order memory. The data also show that either agonist rescues the poor memory performance with a large effective size. Interestingly, the optimal effective dose varied among individual rats of different age groups. PF showed greater potency for older rats, whereas 2MDHX showed better overall population effectiveness. Both PF and 2MDHX have high intrinsic activity at rodent D1-mediated cAMP synthesis. Conversely, at D1-mediated ß-arrestin recruitment, PF has essentially no intrinsic activity, whereas 2MDHX is a super-agonist. These findings suggest that D1 agonists have potential to treat age-related cognitive decline, and the pattern of functional selectivity may be useful for developing drugs with an improved therapeutic index.


Asunto(s)
Envejecimiento , Agonistas de Dopamina , Receptores de Dopamina D1 , Animales , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Agonistas de Dopamina/farmacología , Ratas , Fenantridinas/farmacología , Relación Dosis-Respuesta a Droga , Reconocimiento en Psicología/efectos de los fármacos , Ratas Sprague-Dawley , Ratas Endogámicas F344 , AMP Cíclico/metabolismo
3.
Free Radic Biol Med ; 221: 23-30, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38740100

RESUMEN

The pathogenesis of systemic sclerosis (SSC) fibrosis involves the rapid proliferation of skin fibroblasts, and current anti-fibrotic treatments are limited. This study investigated the relationship between ferroptosis and SSC skin fibroblasts. We observed that erastin-induced ferroptosis was suppressed in SSC fibroblasts. RSL3, a direct inhibitor of Glutathione Peroxidase 4 (GPX4), significantly reduced the viability of the fibroblasts, and upregulation of GPX4 in the SSC fibroblasts contributed to ferroptosis resistance. Furthermore, we demonstrated that transferrin receptor 1 (TfR1) was a crucial transporter for iron deposition in the fibroblasts. Collectively, our results highlight that GPX4 inhibition could enhance the sensitivity to ferroptosis by SSC fibroblasts, which showed distinct characteristics of iron metabolism that were not observed in normal fibroblasts in this study. Taken together, these results suggest that targeting ferroptosis could be a therapeutic strategy for the treatment of SSC.


Asunto(s)
Ferroptosis , Fibroblastos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Receptores de Transferrina , Esclerodermia Sistémica , Piel , Regulación hacia Arriba , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Piel/patología , Piel/metabolismo , Hierro/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Células Cultivadas , Femenino , Fenantridinas/farmacología , Carbolinas , Piperazinas
4.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614259

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Asunto(s)
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogénicos , Simulación del Acoplamiento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulación por Computador , Fenantridinas/farmacología , Fenantridinas/química , Isoquinolinas
5.
Phytomedicine ; 129: 155677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678951

RESUMEN

BACKGROUND: Septic heart failure has been recognized as a puzzle since antiquity and poses a major challenge to modern medicine. Our previous work has demonstrated the potential effects of lycorine (LYC) on sepsis and septic myocardial injury. Nonetheless, further exploration is needed to elucidate the underlying cellular and molecular mechanisms. METHODS: In this study, we conducted transcriptome analysis and weighted gene co-expression network analysis (WGCNA) to identify the key genes and reveal the mechanism of LYC against septic heart failure. PURPOSE: This study aims to apply bioinformatic analysis and experimental validations to explore the protective effects and underlying mechanism of LYC on the cecal ligation and puncture (CLP)-induced sepsis model mice. RESULTS: Transcriptome analysis revealed the differentially expressed genes (DEGs) following LYC treatment. WGCNA analysis identified gene modules associated with LYC-mediated protection, with BCL3 emerging as a core gene within these modules. Notably, BCL3 was an overlapping gene of DEGs and WGCNA core genes induced by LYC treatment, and is highly negatively correlated with cardiac function indicator. In vivo and in vitro study further prove that LYC exerted a protective effect against septic myocardial injury through inhibiting BCL3. BCL3 siRNA ameliorated LPS-induced cardiac injury and inflammation, while BCL3 overexpression reversed the protective effect of LYC against LPS injury. CONCLUSION: In summary, our findings demonstrate the significant attenuation of septic myocardial disorder by LYC, with the identification of BCL3 as a pivotal target gene. This study is the first to report the role of BCL3 in sepsis and septic myocardial injury. Furthermore, the strategy for hub genes screening used in our study facilitates a comprehensive exploration of septic targets and reveals the potential targets for LYC effect. These findings may offer a new therapeutic strategy for the management of septic heart failure, highlighting the cardioprotective effect of LYC as adjunctive therapy for sepsis management.


Asunto(s)
Alcaloides de Amaryllidaceae , Cardiotónicos , Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Fenantridinas , Sepsis , Animales , Sepsis/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Fenantridinas/farmacología , Alcaloides de Amaryllidaceae/farmacología , Ratones , Cardiotónicos/farmacología , Masculino , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica
6.
Phytomedicine ; 128: 155464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484625

RESUMEN

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Asunto(s)
Alcaloides de Amaryllidaceae , Angiotensina II , Ratones Endogámicos C57BL , FN-kappa B , Fenantridinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Alcaloides de Amaryllidaceae/farmacología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fenantridinas/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Modelos Animales de Enfermedad , Lycoris/química , Miocardio
7.
ACS Chem Biol ; 19(4): 875-885, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483263

RESUMEN

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Asunto(s)
Antineoplásicos , Nucléolo Celular , Compuestos Organoplatinos , Fenantridinas , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Cisplatino/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Oxaliplatino/farmacología , Fenantridinas/síntesis química , Fenantridinas/química , Fenantridinas/farmacología , Química Clic , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo
8.
Arch Microbiol ; 205(12): 371, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930433

RESUMEN

To address the growing health threat posed by drug-resistant pathogenic microorganisms, the development of novel antimicrobial medications with multiple mechanisms of action is in urgent demand. With traditional antibacterial drug resources challenging to push forward, developing new antibacterial drugs has become a hot spot in biomedical research. In this study, we tested the antibacterial activity of 119 phenanthridine derivatives via the antibacterial assay and obtained 5 candidates. The cytotoxicity assay showed one phenanthridine derivative, HCK20, was safe for mammalian cells below 125 µM. HCK20 was verified to possess significant antibacterial activity to Streptococcus spp., such as Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus equi with MICs ranging from 15 to 60 µM. Furthermore, we found that HCK20 probably achieved its bacterial inhibition by influencing the permeability of bacterial cell walls via interacting with Streptococcal penicillin-binding proteins (PBPs). Our results suggest that this phenanthridine derivative, HCK20, has great potential to become a novel antibacterial agent that can be a potent treatment for streptococcal infections.


Asunto(s)
Fenantrenos , Streptococcus suis , Animales , Antibacterianos/farmacología , Fenantridinas/farmacología , Mamíferos
9.
PLoS One ; 18(2): e0281180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730273

RESUMEN

Trypanocidal resistance is a major cause of treatment failure. This study evaluated the sensitivity of Trypanosoma evansi field isolates collected from Marsabit and Isiolo counties, Kenya. A total of 2,750 camels were screened using parasitological tests for trypanosomes. Of the screened camels, 113 tested positive from which 40 T. evansi isolates were tested using the single dose mice sensitivity test. Five treatment groups each comprising of 6 mice were inoculated intraperitoneally with 1x105 trypanosomes of each isolate and treated 24 hours later with isometamidium chloride at 1 mg/kg, homidium chloride at 1mg/kg, diminazene aceturate at 20 mg/kg and quinapyramine sulphate & chloride at 1 mg/kg. The fifth group was left untreated (positive control). The mice were monitored daily for 60 days. A survey on camel owners' practices that influence development of resistance to trypanocidal drugs was then conducted. Results indicated presence of drug resistance in all the 7 study sites that had infected camels. Seven of the isolates tested were resistant to diminazene aceturate whereas, 28, 33 and 34 were resistant to isometamidium chloride, quinapyramine sulphate & chloride and homidium chloride, respectively. Seven (17.5%) isolates of the 40 tested were sensitive to all 4 drugs, whereas, 7.5%, 10%,55% and 10% were resistant to 1,2,3 and 4 drugs, respectively. The prevalence of multiple drug resistance was 75%. Survey data indicated that camel management practices influenced the prevalence and degree of drug resistance. In conclusion, the multiple drug resistance observed in the two counties may not be an indication of total trypanocidal drug failure. Judicious treatment of confirmed trypanosomiasis cases with correct dosage would still be effective in controlling the disease since the observed resistance was at the population and not clonal level. However, integrated control of the disease and the vectors using available alternative methods is recommended to reduce drug use.


Asunto(s)
Tripanocidas , Trypanosoma , Tripanosomiasis Africana , Ratones , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Camelus , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Kenia , Cloruros/farmacología , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Diminazeno/farmacología , Diminazeno/uso terapéutico , Resistencia a Medicamentos
10.
Int J Mol Med ; 50(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36367172

RESUMEN

Although there are numerous treatment strategies, including surgery and chemotherapy, the prognosis of cervical cancer remains far from satisfactory. There is an urgent need to develop more effective, more tolerable and safer therapeutics for the treatment of cervical cancer. Lycorine is a natural plantextract that has been previously found to confer anti­tumor activities. Therefore, in the present study, the effects of lycorine and its possible mechanism of action in cervical cancer were investigated. Cell Counting Kit­8, wound healing and Transwell assays were used to verify the proliferation and migration of HeLa cells following lycorine intervention. The results demonstrated that lycorine significantly inhibited the proliferation and migration of HeLa cells. RNA binding motif 10 (RBM10) is a protein associated with apoptosis. It has been suggested that lycorine can affect the expression of RBM10. Flow cytometry demonstrated that lycorine may inhibit the initiation and progression of cervical cancer by promoting apoptosis, which may be mediated through the upregulation of RBM10 expression and increasing TNF­α levels. Xenograft mouse experiments indicated that when lycorine was injected through the tail vein, HeLa tumor growth was inhibited. Mechanistically, western blotting demonstrated that lycorine significantly inhibited the activation of the Akt signaling pathway and potentially reversed epithelial­mesenchymal transition, which was also mediated by RBM10. Furthermore, following RBM10 knockdown with small interfering­RNA, the inhibitory effects of lycorine on cervical cancer was significantly abrogated. Overall, results of the present study suggest that lycorine can upregulate the expression of RBM10 and inhibit the proliferation and migration of cervical cancer cells.


Asunto(s)
Fenantridinas , Proteínas de Unión al ARN , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células HeLa , Proteínas de Unión al ARN/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Fenantridinas/farmacología
11.
Bioorg Med Chem Lett ; 73: 128914, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35917834

RESUMEN

We synthesized new analogues of the anti-AML agent VS-II-173. We studied the effect of the substitution at the 1- and 5-positions of the pyrazolo[4,3-a]phenanthridine scaffold on Pim-1 kinase inhibition and cytotoxicity against AML MOLM-13 cells. We found that compounds 20 and 21, substituted at the 1-position exhibited stronger Pim-1 inhibition together with a high potency toward MOLM-13 cells, associated with apoptosis induction and selectivity over non-cancerous NRK cells.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fenantridinas/farmacología , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-pim-1
12.
Future Med Chem ; 14(12): 867-880, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642458

RESUMEN

Aim: To synthesize and screen phenanthridine and 1,2,3-triazole derivatives for antileishmanial activity. Methodology: Synthesized analogs were tested for antileishmanial activity against transgenic strain of Leishmania infantum promastigotes and ex vivo infections. Results: Compounds T01, T08 and T11 revealed significant activity with EC50 <30 µm and lacked toxicity in mouse spleen and HepG2 cells. T01 with EC50 3.07 µm is fourfold more potent than the drug miltefosine (EC50 12.6 µM) against L. infantum promastigotes. In silico studies indicate that the analogs are nontoxic. A molecular docking analysis was also carried out on the T01 and T08 to investigate the binding pattern at the active site of the chosen target trypanothione reductase. Conclusion: The results of this study reveal that phenanthridine triazoles exhibit antileishmanial activity.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Animales , Antiprotozoarios/química , Ratones , Simulación del Acoplamiento Molecular , Fenantridinas/farmacología , Triazoles/farmacología
13.
Molecules ; 27(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744934

RESUMEN

A 15-step chemoenzymatic total synthesis of C-1 methoxycarbonyl narciclasine (10) was accomplished. The synthesis began with the toluene dioxygenase-mediated dihydroxylation of ortho-dibromobenzene to provide the corresponding cis-dihydrodiol (12) as a single enantiomer. Further key steps included a nitroso Diels-Alder reaction and an intramolecular Heck cyclization. The C-1 homolog 10 was tested and evaluated for antiproliferative activity against natural narciclasine (1) as the positive control. Experimental and spectral data are reported for all novel compounds.


Asunto(s)
Alcaloides de Amaryllidaceae , Alcaloides de Amaryllidaceae/farmacología , Ciclización , Estructura Molecular , Fenantridinas/farmacología , Estereoisomerismo
14.
Phytomedicine ; 104: 154266, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35752077

RESUMEN

BACKGROUND: Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE: To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS: By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION: Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.


Asunto(s)
Alcaloides de Amaryllidaceae , Amaryllidaceae , Antimaláricos , Alcaloides de Amaryllidaceae/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Antivirales/farmacología , Apoptosis , Fenantridinas/farmacología
15.
Bioorg Chem ; 119: 105582, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971944

RESUMEN

Humans have been suffering from vitiligo for a long time. Target vitiligo drugs have yet been approved. Activation of Wnt/ß-catenin signalling has potential in the therapeutic use of vitiligo, so exploring new drugs that specifically directly activate Wnt is worthwhile to obtain new anti-vitiligo agents. In this work, two portions design and synthesis were put into effect. firstly, 17 phenanthridine derivatives with C-4 substitutes were designed and synthesized, which compounds 4, 6, 12, 13 served as H-acceptor with protein showed enhance melanogenesis activity; Secondly, 7 hybrid new scaffolds of compounds were designed and synthesized, scaffold hopping compound 36 that aromatic benzene was replaced pyrazole on ring C showed enhance melanogenesis and tyrosinase activity; The last and most important, a comprehensive optimization and SARs of compound 36 were carried out, compounds 41 and 43 shared phenolic hydroxyl or 3-methyl-pyridine substitutes at C-7 position remarkably improved the capacity of melanogenesis and tyrosinase activity. Compound 43 were identified as new anti-vitiligo agents that specifically activate the Wnt/ß-catenin signalling pathway by targeting Axin. Structure-activity relationship analysis implied that H-acceptor substitutions at the C-4 position and phenolic hydroxyl or pyridine substitutions at the C-7 position would improve the activities of the compounds. These findings reveal a new therapeutic strategy for vitiligo, and compounds 41 and 43 may represent potential compounds for vitiligo treatment.


Asunto(s)
Diseño de Fármacos , Monofenol Monooxigenasa/metabolismo , Fenantridinas/farmacología , Vitíligo/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Fenantridinas/síntesis química , Fenantridinas/química , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Células Tumorales Cultivadas , Vitíligo/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
16.
Amino Acids ; 54(1): 85-98, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34842969

RESUMEN

Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R. Three compounds that showed the highest similarity index were selected for synthesis and bioactivity profiling. All main synthesis products as well as the isolated intermediates, were properly characterized. The physico-chemical analyses were performed using HRESIMS, GC/MS, LC/MS with UV-Vis detection, and FTIR, 1H NMR and 13C NMR spectroscopy. Binding to D1 and D2 receptors and inhibition of dopamine reuptake via dopamine transporter were measured for the synthesized analogues of DHX and SKF 38393.


Asunto(s)
Catecolaminas , Receptores de Dopamina D1 , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Fenantridinas/farmacología , Receptores de Dopamina D1/metabolismo
17.
Pharmacol Res ; 175: 105985, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863821

RESUMEN

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus and no effective therapy is approved. Here, lycorine, a natural alkaloid, was identified as a potential drug for DPN by the bioinformatics analysis of GEO datasets and Connectivity Map database. Lycorine administration improved peripheral nerve function and autophagy-associated proteins of diabetic mice. Again, in vitro high glucose-cultured rat Schwann cells (RSC96) showed enhanced autophagosome marker LC3-II with the treatment of lycorine. Additionally, beclin-1 and Atg3 were decreased in high glucose-stimulated RSC96 cells, which were reversed by lycorine treatment. Furthermore, DPN-associated differentially expressed genes (DEGs) from GEO datasets and lycorine-drug targets from PubChem and PharmMapper were visually analyzed and revealed that MMP9 was both DPN-associated DEGs and lycorine-drug target. Functional enrichment analysis of MMP9-relevant genes showed that cell energy metabolism was involved. Moreover, lycorine reduced high glucose-enhanced MMP9 expression in RSC96 cells. Overexpression of MMP9 attenuated lycorine-induced the expression of beclin-1, Atg3 and LC3-II in high glucose-cultured RSC96 cells. In addition, AMPK pathway activation was confirmed in lycorine-treated high glucose-cultured RSC96 cells. Then AMPK pathway inhibition attenuated lycorine-reduced MMP9 expression in high glucose-treated RSC96 cells. Molecular docking analysis revealed that lycorine bound the domain of AMPK containing Thr 172 site, which affected AMPK (Thr 172) phosphorylation. Finally, AMPK pathway activation and MMP9 downregulation were also revealed in the sciatic nerves of diabetic mice administrated with lycorine. Taken together, lycorine was advised to promote Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation-induced LC3-II transformation in diabetic peripheral neuropathy.


Asunto(s)
Alcaloides de Amaryllidaceae/uso terapéutico , Neuropatías Diabéticas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Fenantridinas/uso terapéutico , Nervio Ciático/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fenantridinas/farmacología , Ratas , Células de Schwann/efectos de los fármacos , Nervio Ciático/fisiología , Transducción de Señal/efectos de los fármacos
18.
Eur J Med Chem ; 227: 113966, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34749200

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented in human history. As a major structural protein, nucleocapsid protein (NPro) is critical to the replication of SARS-CoV-2. In this work, 17 NPro-targeting phenanthridine derivatives were rationally designed and synthesized, based on the crystal structure of NPro. Most of these compounds can interact with SARS-CoV-2 NPro tightly and inhibit the replication of SARS-CoV-2 in vitro. Compounds 12 and 16 exhibited the most potent anti-viral activities with 50% effective concentration values of 3.69 and 2.18 µM, respectively. Furthermore, site-directed mutagenesis of NPro and Surface Plasmon Resonance (SPR) assays revealed that 12 and 16 target N-terminal domain (NTD) of NPro by binding to Tyr109. This work found two potent anti-SARS-CoV-2 bioactive compounds and also indicated that SARS-CoV-2 NPro-NTD can be a target for new anti-virus agents.


Asunto(s)
Antivirales/química , Proteínas de la Nucleocápside de Coronavirus/antagonistas & inhibidores , Fenantridinas/química , SARS-CoV-2/metabolismo , Animales , Antivirales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Diseño de Fármacos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Fenantridinas/metabolismo , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Células Vero , Tratamiento Farmacológico de COVID-19
19.
BMC Pharmacol Toxicol ; 22(1): 70, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753517

RESUMEN

BACKGROUND: Gastric cancer is a common gastrointestinal cancer and currently has the third-highest mortality rate. Research shows that the natural compound narciclasine has a variety of biological activities. The present study aimed to investigate the effect of narciclasine on gastric cancer cells and its molecular mechanisms and determine whether this compound could be a novel therapy for gastric cancer. METHODS: MTT and clone assays were employed to detect the proliferation of gastric cancer cells. The cell apoptosis was detected by flow cytometry. The formation of autophagosomes and autophagosomal lysosomes was observed by transmission electron microscopy and laser confocal scanning microscopy. Western blotting was used to detect the expression of apoptosis, autophagy and Akt/mTOR pathway-related proteins. RESULTS: In this study, we found that narciclasine could inhibit the proliferation of gastric cancer cells and promote apoptosis in gastric cancer cells. Further experiments showed that narciclasine promoted the levels of autophagy proteins LC3-II, Atg-5 and Beclin-1, reduced the expression of the autophagy transporter p62, and increased autophagic flux. By using the autophagy inhibitors 3-MA and CQ, it was shown that narciclasine could induce autophagy-mediated apoptosis in gastric cancer cells. Finally, we found that narciclasine had no significant effects on the total content of Akt and mTOR in gastric cancer cells, and it involved autophagy in gastric cancer cells by reducing the phosphorylation level of p-Akt and p-mTOR. CONCLUSIONS: Narciclasine can induce autophagy-dependent apoptosis in gastric cancer cells by inhibiting the phosphorylation level of Akt/mTOR and thus reduce the proliferation of gastric cancer cells.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Antineoplásicos Fitogénicos/farmacología , Fenantridinas/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Bioorg Chem ; 117: 105414, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655843

RESUMEN

In the current work, sixteen novel amide derivatives of phenanthridine were designed and synthesized using 9-fluorenone, 4-Methoxy benzyl amine, and alkyl/aryl acids. The characterization of the title compounds was performed using LCMS, elemental analysis, 1HNMR, 13CNMR and single crystal XRD pattern was also developed for compounds A8. All the final analogs were screened in vitro for anti-leishmanial activity against promastigote form of L. infantum strain. Among the tested analogs, four compounds (A-06, A-11, A-12, and A-15) exhibited significant anti-leishmanial activity with EC50 value ranges from 8.9 to 21.96 µM against amastigote forms of tested L. infantum strain with SI ranges of 1.0 to 4.3. From the activity results it was found that A-11 was the most active compound in both promastigote and amastigotes forms with EC50 values 8.53 and 8.90 µM respectively. In-silico ADME prediction studies depicted that the titled compounds obeyed Lipinski's rule of five as that of the approved marketed drugs. The predicted in-silico toxicity profile also confirmed that the tested compounds were non-toxic. Finally, molecular docking and molecular dynamics study was also performed for significantly active compound (A-11) in order to study it's putative binding pattern at the active site of the selected leishmanial trypanothione reductase target as well as to understand the stability pattern of target-ligand complex for 100 ns. Single crystal XRD of compound A-08 revealed that the compound crystallizes in monoclinic C2/c space group and showed interesting packing arrangements.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Fenantridinas/química , Fenantridinas/farmacología , Humanos , Leishmania infantum/enzimología , Leishmaniasis Visceral/tratamiento farmacológico , Simulación del Acoplamiento Molecular , NADH NADPH Oxidorreductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA