Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
1.
Int J Oral Sci ; 16(1): 35, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719825

RESUMEN

The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas , Proliferación Celular , Estrés del Retículo Endoplásmico , Neoplasias de la Boca , Fenformina , Factores de Transcripción , Fenformina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Autofagia/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/efectos de los fármacos , Ratones , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Western Blotting
2.
ACS Appl Bio Mater ; 7(2): 1271-1289, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315869

RESUMEN

Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.


Asunto(s)
Sulfatos de Condroitina , Micelas , Triterpenos Pentacíclicos , Animales , Ratones , Fenformina/metabolismo , Tejido Adiposo/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Inflamación , Dieta Alta en Grasa/efectos adversos
3.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337129

RESUMEN

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Asunto(s)
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutáneas , Ratones , Animales , Rayos Ultravioleta , Carvedilol/farmacología , Ratones Pelados , Fenformina/farmacología , Carcinoma de Células Escamosas/prevención & control , Carcinoma de Células Escamosas/etiología , Carcinogénesis/efectos de la radiación , Niacinamida/farmacología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/patología , Piel/efectos de la radiación
4.
Cells ; 12(24)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38132178

RESUMEN

The effect of agonists on AMP-activated protein kinase (AMPK), mainly metformin and phenformin, has been appreciated in the treatment of multiple types of tumors. Specifically, the antitumor activity of phenformin has been demonstrated in melanomas containing the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation. In this report, we elucidated the synergistic antitumor effects of biguanides with metabolism inhibitors on colon tumors. Phenformin with 2-deoxy-D-glucose (2DG) inhibited tumor cell growth in cancer cell lines, including HT29 cells harboring BRAF- and p53-mutations. Biochemical analyses showed that two chemotherapeutics exerted cooperative effects to reduce tumor growth through cell cycle arrest, apoptosis, and autophagy. The drugs demonstrated activity against phosphorylated ERK and the gain-of-function p53 mutant protein. To demonstrate tumor regressive effects in vivo, we established patient-derived models, including xenograft (PDX) and organoids (PDO). Co-treatment of biguanides with chemotherapeutics efficiently reduced the growth of patient-derived colon models in comparison to treatment with a single agent. These results strongly suggest that significant therapeutic advantages would be achieved by combining AMPK activators such as phenformin and cancer metabolic inhibitors such as 2DG.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Metformina , Animales , Ratones , Humanos , Fenformina/farmacología , Fenformina/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteína p53 Supresora de Tumor , Proteínas Quinasas Activadas por AMP/metabolismo , Reposicionamiento de Medicamentos , Neoplasias del Colon/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico
5.
Cancer Res Commun ; 3(12): 2447-2454, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37930123

RESUMEN

PURPOSE: Preclinical studies show that activation of AMP kinase by phenformin can augment the cytotoxic effect and RAF inhibitors in BRAF V600-mutated melanoma. We conducted a phase Ib dose-escalation trial of phenformin with standard dose dabrafenib/trametinib in patients with metastatic BRAF V600-mutated melanoma. EXPERIMENTAL DESIGN: We used a 3+3 dose-escalation design which explored phenformin doses between 50 and 200 mg twice daily. Patients also received standard dose dabrafenib/trametinib. We measured phenformin pharmacokinetics and assessed the effect of treatment on circulating myeloid-derived suppressor cells (MDSC). RESULTS: A total of 18 patients were treated at dose levels ranging from 50 to 200 mg twice daily. The planned dose-escalation phase had to be cancelled because of the COVID 19 pandemic. The most common toxicities were nausea/vomiting; there were two cases of reversible lactic acidosis. Responses were seen in 10 of 18 patients overall (56%) and in 2 of 8 patients who had received prior therapy with RAF inhibitor. Pharmacokinetic data confirmed drug bioavailability. MDSCs were measured in 7 patients treated at the highest dose levels and showed MDSC levels declined on study drug in 6 of 7 patients. CONCLUSIONS: We identified the recommended phase II dose of phenformin as 50 mg twice daily when administered with dabrafenib/trametinib, although some patients will require short drug holidays. We observed a decrease in MDSCs, as predicted by preclinical studies, and may enhance immune recognition of melanoma cells. SIGNIFICANCE: This is the first trial using phenformin in combination with RAF/MEK inhibition in patients with BRAF V600-mutated melanoma. This is a novel strategy, based on preclinical data, to increase pAMPK while blocking the MAPK pathway in melanoma. Our data provide justification and a recommended dose for a phase II trial.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Fenformina/efectos adversos , Proteínas Proto-Oncogénicas B-raf/genética
6.
Rom J Morphol Embryol ; 64(3): 355-361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867353

RESUMEN

Today, many anticancer drugs are used clinically for ovarian cancer, one of the leading causes of cancer-related deaths in women. Phenformin is an antidiabetic drug of the biguanide class. It improves the antiproliferative activity in cancer cells. Hypoxia is an important component associated with ovarian cancer and its tumor microenvironment. The aim of this study was to investigate the anticancer effects of Phenformin in SKOV-3 human ovarian cancer cells under hypoxic conditions. SKOV-3 human ovarian cancer cells treated with different doses of Phenformin (0.5 mM, 1 mM, 2 mM, 5 mM) for 24 hours were subjected to WST-1 cell viability assay and Annexin V apoptosis assay. A dose-dependent decrease in cell viability with Phenformin treatment was observed. In addition, Phenformin activated percentage of apoptotic SKOV-3 cancer cells in a dose-dependent manner. In this study, Cobalt(II) chloride (CoCl2) treatment leads to increased hypoxia-inducible factor-1alpha (HIF-1α) expression and Phenformin can recover hypoxic condition. HIF-1α protein expression was significantly correlated with cell viability assay and apoptosis assay. We also found that Phenformin inhibits expression of phosphoinositide-dependent kinase 1 (PDK1) in SKOV-3 ovarian cancer cells. The ability to migrate to cancer cells was significantly reduced in a dose-dependent manner with Phenformin. This data demonstrates that Phenformin treatment can induce apoptosis and inhibit proliferation in ovarian cancer cells under hypoxic conditions. The findings reveal that HIF-1α is a new target for the treatment of ovarian cancer.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Antineoplásicos/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fenformina/farmacología , Microambiente Tumoral
7.
J Mol Model ; 29(8): 238, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420135

RESUMEN

CONTEXT: Chronic inflammation is a risk factor for diabetes, but it can also be a complication of diabetes, leading to severe diabetes and causing many other clinical manifestations. Inflammation is a major emerging complication in both type I and type II diabetes, which causes increasing interest in targeting inflammation to improve and control diabetes. Diabetes with insulin resistance and impaired glucose utilization in humans and their underlying mechanism is not fully understood. But a growing understanding of the intricacy of the insulin signaling cascade in diabetic inflammatory cells reveals potential target genes and their proteins responsible for severe insulin resistance. With this baseline concept, the current project explores the binding affinities of the hyaluronic acid anti-diabetic compounds conjugates to such target proteins in diabetic inflammatory cells and their molecular geometries. A range of 48 anti-diabetic compounds was screened against aldose reductase binding pocket 3 protein target through in silico molecular docking, and results revealed that three compounds viz, metformin (CID:4091), phenformin (CID:8249), sitagliptin (CID:4,369,359), possess significant binding affinity out of 48 chosen drugs. Further, these three anti-diabetic compounds were conjugated with hyaluronic acid (HA), and their binding affinity and their molecular geometrics towards aldose reductase enzyme were screened compared with the free form of the drug. The molecular geometries of three shortlisted drugs (metformin, phenformin, sitagliptin) and their HA conjugates were also explored through density functional theory studies, and it proves their good molecular geometry towards pocket 3 of aldose reductase target. Further, MD simulation trajectories affirm that HA conjugates possess good binding affinity and simulation trajectories with protein target aldose reductase than a free form of the drug. Our current study unravels the new mechanism of drug targeting for diabetes through HA conjugation for inflammatory diabetes. HA conjugates act as novel drug candidates for treating inflammatory diabetes; however, it needs further human clinical trials. METHODS: For ligand structure, PubChem, ACD chem sketch, and online structure file generator platform are utilized for ligand preparation. Target protein aldose reductase obtained from protein database (PDB). For molecular docking analysis, AutoDock Vina (Version 4) was utilized. pKCSM online server used to predict ADMET properties of the above three shortlisted drugs from the docking study. Using mol-inspiration software (version 2011.06), three shortlisted compounds' bioactivity scores were predicted. DFT analysis for three shortlisted anti-diabetic drugs and their hyaluronic acid conjugates were calculated using a functional B3LYP set of Gaussian 09 software. Molecular dynamics simulation calculations for six chosen protein-ligand complexes were done through YASARA dynamics software and AMBER14 force field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Humanos , Simulación del Acoplamiento Molecular , Ácido Hialurónico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fenformina , Aldehído Reductasa/metabolismo , Ligandos , Simulación de Dinámica Molecular , Fosfato de Sitagliptina , Inflamación
8.
Adv Biol (Weinh) ; 7(7): e2300080, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37303292

RESUMEN

Lung cancer is one of the most fatal cancers worldwide. Resistance to conventional therapies remains a hindrance to patient treatment. Therefore, the development of more effective anti-cancer therapeutic strategies is imperative. Solid tumors exhibit a hyperglycolytic phenotype, leading to enhanced lactate production; and, consequently, its extrusion to the tumor microenvironment. Previous data reveals that inhibition of CD147, the chaperone of lactate transporters (MCTs), decreases lactate export in lung cancer cells and sensitizes them to phenformin, leading to a drastic decrease in cell growth. In this study, the development of anti-CD147 targeted liposomes (LUVs) carrying phenformin is envisioned, and their efficacy is evaluated to eliminate lung cancer cells. Herein, the therapeutic effect of free phenformin and anti-CD147 antibody, as well as the efficacy of anti-CD147 LUVs carrying phenformin on A549, H292, and PC-9 cell growth, metabolism, and invasion, are evaluated. Data reveals that phenformin decreases 2D and 3D-cancer cell growth and that the anti-CD147 antibody reduces cell invasion. Importantly, anti-CD147 LUVs carrying phenformin are internalized by cancer cells and impaired lung cancer cell growth in vitro and in vivo. Overall, these results provide evidence for the effectiveness of anti-CD147 LUVs carrying phenformin in compromising lung cancer cell aggressiveness.


Asunto(s)
Neoplasias Pulmonares , Fenformina , Humanos , Fenformina/farmacología , Fenformina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Lactatos/farmacología , Lactatos/uso terapéutico , Microambiente Tumoral
9.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175448

RESUMEN

Since aerobic glycolysis was first observed in tumors almost a century ago by Otto Warburg, the field of cancer cell metabolism has sparked the interest of scientists around the world as it might offer new avenues of treatment for malignant cells. Our current study claims the discovery of gnetin H (GH) as a novel glycolysis inhibitor that can decrease metabolic activity and lactic acid synthesis and displays a strong cytostatic effect in melanoma and glioblastoma cells. Compared to most of the other glycolysis inhibitors used in combination with the complex-1 mitochondrial inhibitor phenformin (Phen), GH more potently inhibited cell growth. RNA-Seq with the T98G glioblastoma cell line treated with GH showed more than an 80-fold reduction in thioredoxin interacting protein (TXNIP) expression, indicating that GH has a direct effect on regulating a key gene involved in the homeostasis of cellular glucose. GH in combination with phenformin also substantially enhances the levels of p-AMPK, a marker of metabolic catastrophe. These findings suggest that the concurrent use of the glycolytic inhibitor GH with a complex-1 mitochondrial inhibitor could be used as a powerful tool for inducing metabolic catastrophe in cancer cells and reducing their growth.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Fenformina , Glucólisis , Glucosa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Línea Celular Tumoral
10.
Sci Rep ; 12(1): 19857, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400857

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most universal types of cancer all over the world and its morbidity continues to rise year by year. Growing evidence has demonstrated that endoplasmic reticulum stress is highly activated in cancer cells and plays a key role in regulating the fate of cancer cells. However, the role and mechanism of endoplasmic reticulum stress in lung adenocarcinoma genesis and development remains unclear. In this research, we developed a prognostic model to predict the overall survival of patients with LUAD utilizing endoplasmic reticulum stress-related genes and screened out potential small molecular compounds, which could assist the clinician in making accurate decisions and better treat LUAD patients. Firstly, we downloaded 419 endoplasmic reticulum stress-related genes (ERSRGs) from Molecular Signatures Database (MSigDB). Secondly, we obtained information about the transcriptome profiling and corresponding clinical data of 59 normal samples and 535 lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) database. Next, we used the DESeq2 package to identify differentially expressed genes related to endoplasmic reticulum stress. We performed univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis to establish a prognostic model for LUAD patients based on ERSRGs. Then, we carried out univariate and multivariate independent prognostic analysis of endoplasmic reticulum stress-related gene (ERSRG) score and some clinical traits of lung adenocarcinoma. Additionally, we developed a clinically applicable nomogram for predicting survival for LUAD patients over one, three, and five years. Moreover, we carried out a drug sensitivity analysis to identify novel small molecule compounds for LUAD treatment. Finally, we examined the tumor microenvironment (TME) and immune cell infiltrating analysis to explore the interactions between immune and cancer cells. 142 differentially expressed ERSRGs were identified by using the DESeq2 package. A prognostic model was built based on 7 differentially expressed ERSRGs after performing univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. According to the results of univariate and multivariate independent prognostic analysis, we found ERSRG score can be used as an independent prognostic maker. Using the Kaplan-Meier curves, we found low-risk patients had higher survival probability than high-risk patients in both training set and test set. A nomogram was drawn to predict 1-, 3-, and 5-year survival probability. The calibration curves explained good performance of the model for the prediction of survival. Phenformin, OSU-03012, GSK-650394 and KIN001-135 were identified as the drugs most likely to provide important information to clinicians about the treatment of LUAD patients. A prognostic prediction model was established based on 7 differentially expressed ERSRGs (PDX1, IGFBP1, DDIT4, PPP1R3G, CFTR, DERL3 and NUPR1), which could effectively predict the prognosis of LUAD patients and give a reference for clinical doctors to help LUAD patients to make better treatment tactics. Based on the 4 small molecule compounds (Phenformin, OSU-03012, GSK-650394 and KIN001-135) we discovered, targeting endoplasmic reticulum stress-related genes may also be a therapeutic approach for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Estrés del Retículo Endoplásmico/genética , Fenformina , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estimación de Kaplan-Meier , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Microambiente Tumoral
11.
Cells ; 11(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35954273

RESUMEN

The treatment of many skin inflammation diseases, such as psoriasis and atopic dermatitis, is still a challenge and inflammation plays important roles in multiple stages of skin tumor development, including initiation, promotion and metastasis. Phenformin, a biguanide drug, has been shown to play a more efficient anti-tumor function than another well-known biguanide drug, metformin, which has been reported to control the expression of pro-inflammatory cytokines; however, little is known about the effects of phenformin on skin inflammation. This study used a mouse acute inflammation model, ex vivo skin organ cultures and in vitro human primary keratinocyte cultures to demonstrate that phenformin can suppress acute skin inflammatory responses induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and significantly suppresses the pro-inflammatory cytokines IL-1ß, IL-6 and IL-8 in human primary keratinocytes in vitro. The suppression of pro-inflammatory cytokine expression by phenformin was not directly through regulation of the MAPK or NF-κB pathways, but by controlling the expression of c-Myc in human keratinocytes. We demonstrated that the overexpression of c-Myc can induce pro-inflammatory cytokine expression and counteract the suppressive effect of phenformin on cytokine expression in keratinocytes. In contrast, the down-regulation of c-Myc produces effects similar to phenformin, both in cytokine expression by keratinocytes in vitro and in skin inflammation in vivo. Finally, we showed that phenformin, as an AMPK activator, down-regulates the expression of c-Myc through regulation of the AMPK/mTOR pathways. In summary, phenformin inhibits the expression of pro-inflammatory cytokines in keratinocytes through the down-regulation of c-Myc expression to play an anti-inflammation function in the skin.


Asunto(s)
Citocinas , Dermatitis Atópica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Citocinas/metabolismo , Dermatitis Atópica/metabolismo , Humanos , Inflamación/metabolismo , Queratinocitos/metabolismo , Ratones , Fenformina/farmacología , Fenformina/uso terapéutico
12.
Cell Commun Signal ; 20(1): 99, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761398

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS: This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS: Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS: These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Factor Inductor de la Apoptosis/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasas/metabolismo , Caspasas/farmacología , Muerte Celular , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/patología , Mitocondrias/metabolismo , Fenformina/metabolismo , Fenformina/farmacología , Proteínas Serina-Treonina Quinasas
13.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238637

RESUMEN

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Gluconeogénesis , Guanidinas/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Fenformina/farmacología , Animales , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción , Piridinas/farmacología
14.
Biomed Pharmacother ; 147: 112686, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124385

RESUMEN

Cancer is one of the main causes of human mortality and brain tumors, including invasive pituitary adenomas, medulloblastomas and glioblastomas are common brain malignancies with poor prognosis. Therefore, the development of innovative management strategies for refractory cancers and brain tumors is important. In states of mitochondrial dysfunction - commonly encountered in malignant cells - cells mostly shift to anaerobic glycolysis by increasing the expression of LDHA (Lactate Dehydrogenase-A) gene. Oxamate, an isosteric form of pyruvate, blocks LDHA activity by competing with pyruvate. By blocking LDHA, it inhibits protumorigenic cascades and also induces ROS (reactive oxygen species)-induced mitochondrial apoptosis of cancer cells. In preclinical studies, oxamate blocked the growth of invasive pituitary adenomas, medulloblastomas and glioblastomas. Oxamate also increases temozolomide and radiotherapy sensitivity of glioblastomas. Oxamate is highly polar, which may preclude its clinical utilization due to low penetrance through cell membranes. However, this obstacle could be overcome with nanoliposomes. Moreover, different oxamate analogs were developed which inhibit LDHC4, an enzyme also involved in cancer progression and germ cell physiology. Lastly, phenformin, an antidiabetic agent, exerts anticancer effects via complex I inhibition in the mitochondria and leading the overproduction of ROS. Oxamate combination with phenformin reduces the lactic acidosis-causing side effect of phenformin while inducing synergistic anticancer efficacy. In sum, oxamate as a single agent and more efficiently with phenformin has high potential to slow the progression of aggressive cancers with special emphasis to brain tumors.


Asunto(s)
Neoplasias Encefálicas/patología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Ácido Oxámico/farmacología , Animales , Línea Celular Tumoral , Glucólisis/fisiología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Neoplasias/patología , Fenformina/farmacología , Tolerancia a Radiación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Temozolomida/farmacología
15.
Invest New Drugs ; 40(3): 576-585, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35015172

RESUMEN

BACKGROUND: Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2V617F pre-clinical MPN models, which highlighted the antineoplastic potential of biguanides for MPN treatment. Phenformin is a biguanide that has been used to treat diabetes, but was withdrawn due to its potential to cause lactic acidosis in patients. AIMS: We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2V617F-knockin MPN mice. RESULTS: In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2V67F cells. Long-term treatment with 40 mg/kg phenformin in Jak2V617F knockin mice increased the frequency of LSK, myeloid progenitors (MP), and multipotent progenitors (MPP) in the bone marrow. Phenformin treatment did not affect peripheral blood counts, spleen weight, megakaryocyte count, erythroid precursors frequency, or ex vivo clonogenic capacity. Ex vivo treatment of bone marrow cells from Jak2V617F knockin mice with phenformin did not affect hematologic parameters or engraftment in recipient mice. CONCLUSIONS: Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2V617F-knockin mice. Additional studies are necessary to further understand the effects of phenformin on early hematopoietic progenitors.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Animales , Médula Ósea , Modelos Animales de Enfermedad , Humanos , Janus Quinasa 2 , Ratones , Mutación , Trastornos Mieloproliferativos/tratamiento farmacológico , Fenformina/farmacología , Fenformina/uso terapéutico , Policitemia Vera/genética
16.
Molecules ; 26(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771022

RESUMEN

The results presented in this paper confirm the beneficial role of an easy-to-use and low-cost thin-layer chromatography (TLC) technique for describing the retention behavior and the experimental lipophilicity parameter of two biguanide derivatives, metformin and phenformin, in both normal-phase (NP) and reversed-phase (RP) TLC systems. The retention parameters (RF, RM) obtained under different chromatographic conditions, i.e., various stationary and mobile phases in the NP-TLC and RP-TLC systems, were used to determine the lipophilicity parameter (RMW) of metformin and phenformin. This study confirms the poor lipophilicity of both metformin and phenformin. It can be stated that the optimization of chromatographic conditions, i.e., the kind of stationary phase and the composition of mobile phase, was needed to obtain the reliable value of the chromatographic lipophilicity parameter (RMW) in this study. The fewer differences in the RMW values of both biguanide derivatives were ensured by the RP-TLC system composed of RP2, RP18, and RP18W plates and the mixture composed of methanol, propan-1-ol, and acetonitrile as an organic modifier compared to the NP-TLC analysis. The new calculation procedures for logP of drugs based on topological indices 0χν, 0χ, 1χν, M, and Mν may be a certain alternative to other algorithms as well as the TLC procedure performed under optimized chromatographic conditions. The knowledge of different lipophilicity parameters of the studied biguanides can be useful in the future design of novel and more therapeutically effective metformin and phenformin formulations for antidiabetic and possible anticancer treatment. Moreover, the topological indices presented in this work may be further used in the QSAR study of the examined biguanides.


Asunto(s)
Metformina/química , Fenformina/química , Cromatografía de Fase Inversa , Cromatografía en Capa Delgada , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
17.
J Nanobiotechnology ; 19(1): 375, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794446

RESUMEN

BACKGROUND: Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. RESULTS: In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-ß and vimentin) after combining treatment. CONCLUSION: Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors.


Asunto(s)
Antígeno B7-H1 , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Fenformina , Terapia Fototérmica , Albúminas/química , Animales , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomineralización/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Peróxido de Hidrógeno , Verde de Indocianina , Compuestos de Manganeso , Ratones , Óxidos , Fenformina/química , Fenformina/farmacología
18.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623325

RESUMEN

Mitochondrial electron transport chain complex I (ETCC1) is the essential core of cancer metabolism, yet potent ETCC1 inhibitors capable of safely suppressing tumor growth and metastasis in vivo are limited. From a plant extract screening, we identified petasin (PT) as a highly potent ETCC1 inhibitor with a chemical structure distinct from conventional inhibitors. PT had at least 1700 times higher activity than that of metformin or phenformin and induced cytotoxicity against a broad spectrum of tumor types. PT administration also induced prominent growth inhibition in multiple syngeneic and xenograft mouse models in vivo. Despite its higher potency, it showed no apparent toxicity toward nontumor cells and normal organs. Also, treatment with PT attenuated cellular motility and focal adhesion in vitro as well as lung metastasis in vivo. Metabolome and proteome analyses revealed that PT severely depleted the level of aspartate, disrupted tumor-associated metabolism of nucleotide synthesis and glycosylation, and downregulated major oncoproteins associated with proliferation and metastasis. These findings indicate the promising potential of PT as a potent ETCC1 inhibitor to target the metabolic vulnerability of tumor cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Sesquiterpenos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metaboloma/efectos de los fármacos , Metformina/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Metástasis de la Neoplasia/prevención & control , Neoplasias Experimentales/patología , Petasites/química , Fenformina/farmacología , Sesquiterpenos/química , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oxid Med Cell Longev ; 2021: 5428364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367462

RESUMEN

BACKGROUND: Although the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR- TKI) therapy has been proven in non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR-TKIs presents a serious clinical problem. Hence, the identification of new therapeutic strategy is needed to treat EGFR-TKI-resistant NSCLC. METHODS: Acquired EGFR-TKI-resistant lung cancer cell lines (HCC827, H1993, and H292 cells with acquired resistance to gefitinib or erlotinib) were used for cell-based studies. IncuCyte live cell analysis system and XFp analyzer were used for the determination of cell proliferation and energy metabolism, respectively. In vivo anticancer effect of phenformin was assessed in xenografts implanting HCC827 and gefitinib-resistant HCC827 (HCC827 GR) cells. RESULTS: HCC827 GR and erlotinib-resistant H1993 (H1993 ER) cells exhibited different metabolic properties compared with their respective parental cells, HCC827, and H1993. In EGFR-TKI-resistant NSCLC cells, glycolysis markers including the glucose consumption rate, intracellular lactate level, and extracellular acidification rate were decreased; however, mitochondrial oxidative phosphorylation (OXPHOS) markers including mitochondria-driven ATP production, mitochondrial membrane potential, and maximal OXPHOS capacity were increased. Cell proliferation and tumor growth were strongly inhibited by biguanide phenformin via targeting of mitochondrial OXPHOS complex 1 in EGFR-TKI-resistant NSCLC cells. Inhibition of OXPHOS resulted in a reduced NAD+/NADH ratio and intracellular aspartate levels. Recovery of glycolysis by hexokinase 2 overexpression in erlotinib-resistant H292 (H292 ER) cells significantly reduced the anticancer effects of phenformin. CONCLUSION: Long-term treatment with EGFR-TKIs causes reactivation of mitochondrial metabolism, resulting in vulnerability to OXPHOS inhibitor such as phenformin. We propose a new therapeutic option for NSCLC with acquired EGFR-TKI resistance that focuses on cancer metabolism.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fosforilación Oxidativa , Fenformina/farmacología , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Hipoglucemiantes/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Oxidación-Reducción , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Commun ; 12(1): 3299, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083537

RESUMEN

Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Fenformina/farmacología , Factor de Transcripción STAT1/metabolismo , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Sinergismo Farmacológico , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Femenino , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Humanos , Interferón gamma/administración & dosificación , Interferón gamma/deficiencia , Interferón gamma/metabolismo , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones SCID , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenformina/administración & dosificación , Poli I-C/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/agonistas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA