Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.542
Filtrar
1.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730387

RESUMEN

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Asunto(s)
Bleomicina , Regulación hacia Abajo , Morfinanos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Morfinanos/farmacología , Morfinanos/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Proteína smad3/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células A549 , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
2.
J Cell Mol Med ; 28(10): e18448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774993

RESUMEN

Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Fibrosis Pulmonar , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Terapia Molecular Dirigida , Matriz Extracelular/metabolismo
3.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720270

RESUMEN

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibrosis Pulmonar , Dióxido de Silicio , Simvastatina , Animales , Masculino , Ratas , Acetofenonas/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/prevención & control , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Simvastatina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
4.
Sci Rep ; 14(1): 11131, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750140

RESUMEN

This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-ß1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.


Asunto(s)
Ratones Endogámicos BALB C , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma , Fibrosis Pulmonar , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Alcaloides de la Vinca , Animales , Alcaloides de la Vinca/farmacología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Factor de Crecimiento Transformador beta1/metabolismo , PPAR gamma/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína smad3/metabolismo , Proteína Smad2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Humanos , Bleomicina/efectos adversos , Modelos Animales de Enfermedad , Masculino , Línea Celular , Estrés Oxidativo/efectos de los fármacos
5.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702742

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Asunto(s)
Anticuerpos Monoclonales , Quimiocina CX3CL1 , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Fibrosis Pulmonar , Esclerodermia Sistémica , Piel , Animales , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/inmunología , Ratones , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/inmunología , Fibrosis , Femenino , Ratones Endogámicos C57BL , Humanos , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/inmunología
6.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706209

RESUMEN

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo , Isoquinolinas , Janus Quinasa 2 , Pulmón , Fibrosis Pulmonar , Piridinas , Pirroles , Transducción de Señal , Proteína smad3 , Animales , Proteína smad3/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Fosforilación , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/enzimología , Masculino , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Humanos , Ratas Sprague-Dawley , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Línea Celular , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/enzimología , Antiinflamatorios/farmacología , Ratas
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708496

RESUMEN

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis Pulmonar , Ratas Sprague-Dawley , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Ratas , Masculino , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Bleomicina , Quimiocina CCL2/metabolismo , Familia-src Quinasas/metabolismo
8.
Respir Res ; 25(1): 213, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762465

RESUMEN

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Asunto(s)
Dieta Alta en Grasa , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad , Fibrosis Pulmonar , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Fibrosis Pulmonar/prevención & control , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Inhibidores de PCSK9 , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Ratones Obesos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Hiperreactividad Bronquial/prevención & control , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/fisiopatología , Anticuerpos Monoclonales Humanizados
9.
Can Respir J ; 2024: 5554886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584671

RESUMEN

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Asunto(s)
Ferroptosis , Panax notoginseng , Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/tratamiento farmacológico , Ciclooxigenasa 2 , Colágeno , Receptores ErbB
10.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613355

RESUMEN

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Cofactor PQQ/farmacología , Transición Epitelial-Mesenquimal , Células Epiteliales Alveolares , Material Particulado/toxicidad
11.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588467

RESUMEN

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Asunto(s)
Diseño de Fármacos , Elastina , Fibrosis Pulmonar , Receptores de Superficie Celular , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Ratones , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
12.
Eur J Pharm Sci ; 197: 106779, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38670294

RESUMEN

Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 µm (1.79 µm±0.06 µm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-ß1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.


Asunto(s)
Acetilcisteína , Indoles , Liposomas , Pulmón , Fibrosis Pulmonar , Animales , Indoles/administración & dosificación , Indoles/química , Indoles/farmacocinética , Acetilcisteína/administración & dosificación , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Administración por Inhalación , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Masculino , Tamaño de la Partícula
13.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670401

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteína Forkhead Box O3 , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Extractos Vegetales , Fibrosis Pulmonar , Animales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células A549 , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Proteína Forkhead Box O3/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Masculino , Bleomicina , Antifibróticos/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología
14.
Life Sci ; 346: 122626, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614295

RESUMEN

AIM: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive condition with unknown aetiology that causes the lung parenchyma to scar incessantly, lowering the quality of life and hastening death. In this investigation, we studied the anti-fibrotic activity of Geneticin (a derivative of gentamycin) using in vitro and in vivo models. MAIN METHODS: The TGF-ß-mediated differentiation model was adopted to investigate (fibrotic marker's levels/expression) the anti-fibrotic activity of geneticin (GNC) in in-vitro scenarios (LL29 and DHLF cells). In vivo, the bleomycin (BLM)-induced pulmonary fibrosis model was employed by administering BLM intratracheally. Post 14 days of BLM administration, animals were treated with geneticin (6.25, 12.5, and 25 mg·kg-1) for another 14 days, and their therapeutic effect was investigated using a spectrum of techniques. KEY FINDINGS: RTqPCR and western-blot results revealed that geneticin treatment significantly attenuated the TGF-ß/BLM mediated fibrotic cascade of markers in both in-vitro and in-vivo models respectively. Further, the BLM-induced pulmonary fibrosis model revealed, that geneticin dose-dependently reduced the BLM-induced inflammatory cell infiltrations, and thickness of the alveoli walls, improved the structural distortion of the lung, and aided in improving the survival rate of the rats. Picrosirus and Masson's trichrome staining indicated that geneticin therapy reduced collagen deposition and, as a result, lung functional characteristics were improved as assessed by flexivent. Mechanistic studies have shown that geneticin reduced fibrosis by attenuating the TGF-ß/Smad through modulating the AMPK/SIRT1 signaling. SIGNIFICANCE: These findings suggest that geneticin may be a promising therapeutic agent for the treatment of pulmonary fibrosis in clinical settings.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Bleomicina , Fibrosis Pulmonar , Transducción de Señal , Sirtuina 1 , Factor de Crecimiento Transformador beta , Animales , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ratas , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Bleomicina/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Smad/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
15.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613881

RESUMEN

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Asunto(s)
Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Umbeliferonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Neumonía/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673771

RESUMEN

Using a lipopolysaccharide model of acute lung injury, we previously showed that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. These studies provided a rationale for testing the effect of HJP272, an endothelin receptor antagonist (ERA), in hamster models of pulmonary fibrosis induced by intratracheal instillation of either bleomycin (BLM) or amiodarone (AM). To determine the temporal effects of blocking ET-1 activity, animals were given HJP272 either 1 h before initiation of lung injury or 24 h afterward. The results indicated that pretreatment with this agent caused significant reductions in various inflammatory parameters, whereas post-treatment was ineffective. This finding suggests that ERAs are only effective at a very early stage of pulmonary fibrosis and explains their lack of success in clinical trials involving patients with this disease. Nevertheless, ERAs could serve as prophylactic agents when combined with drugs that may induce pulmonary fibrosis. Furthermore, developing a biomarker for the initial changes in the lung extracellular matrix could increase the efficacy of ERAs and other therapeutic agents in preventing the progression of the disease. While no such biomarker currently exists, we propose the ratio of free to peptide-bound desmosine, a unique crosslink of elastin, as a potential candidate for detecting the earliest modifications in lung microarchitecture associated with pulmonary fibrosis.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Antagonistas de los Receptores de Endotelina/farmacología , Antagonistas de los Receptores de Endotelina/uso terapéutico , Bleomicina/efectos adversos , Cricetinae , Modelos Animales de Enfermedad , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Humanos , Endotelina-1/metabolismo
17.
Int J Pharm ; 656: 124096, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583821

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Asunto(s)
Quitosano , Exosomas , Fibronectinas , Liposomas , Fibrosis Pulmonar , Piridonas , Animales , Fibronectinas/administración & dosificación , Fibrosis Pulmonar/tratamiento farmacológico , Exosomas/química , Quitosano/química , Quitosano/administración & dosificación , Administración por Inhalación , Microesferas , Liberación de Fármacos , Masculino , Preparaciones de Acción Retardada , Fenantrenos/administración & dosificación , Fenantrenos/química , Fenantrenos/farmacocinética , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratas Sprague-Dawley , Antifibróticos/administración & dosificación , Antifibróticos/química
18.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582594

RESUMEN

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Asunto(s)
Lesión Pulmonar Aguda , Paraquat , Fibrosis Pulmonar , Ratones , Animales , Paraquat/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/toxicidad , Factor de Crecimiento Transformador beta1/toxicidad , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno/toxicidad , Colágeno/metabolismo , Factores de Crecimiento Transformadores/toxicidad
19.
Redox Biol ; 72: 103148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603946

RESUMEN

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Asunto(s)
Apoptosis , Bleomicina , Fibroblastos , Especies Reactivas de Oxígeno , Ácido Selenioso , Bleomicina/efectos adversos , Animales , Ratones , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Ácido Selenioso/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Masculino , Proliferación Celular/efectos de los fármacos
20.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626519

RESUMEN

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Asunto(s)
Curcumina , ADN Metiltransferasa 3A , Matriz Extracelular , Fibroblastos , Ratones Endogámicos C57BL , MicroARNs , Mitocondrias , Animales , MicroARNs/genética , MicroARNs/metabolismo , Curcumina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ADN Metiltransferasa 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Humanos , Ratones , Masculino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Bleomicina , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA