Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 993
Filtrar
1.
Parasit Vectors ; 17(1): 285, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956650

RESUMEN

Usutu virus is an emerging pathogen transmitted by mosquitoes. Culex modestus mosquitoes are widespread in Europe, but their role in disease transmission is poorly understood. Recent data from a single infectious mosquito suggested that Culex modestus could be an unrecognized vector for Usutu virus. In this study, our aim was to corroborate this finding using a larger sample size. We collected immature Culex modestus from a reedbed pond in Flemish Brabant, Belgium, and reared them in the laboratory until the third generation. Adult females were then experimentally infected with Usutu virus in a blood meal and incubated at 25 °C for 14 days. The presence of Usutu virus in the saliva, head and body of each female was determined by plaque assay and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The transmission efficiency was 54% (n = 15/28), confirming that Belgian Culex modestus can experimentally transmit Usutu virus.


Asunto(s)
Culex , Infecciones por Flavivirus , Flavivirus , Mosquitos Vectores , Animales , Culex/virología , Femenino , Mosquitos Vectores/virología , Flavivirus/genética , Flavivirus/fisiología , Bélgica , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Saliva/virología
2.
PLoS Negl Trop Dis ; 18(7): e0012172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985837

RESUMEN

Usutu virus (USUV) is an emerging flavivirus that is maintained in an enzootic cycle with mosquitoes as vectors and birds as amplifying hosts. In Europe, the virus has caused mass mortality of wild birds, mainly among Common Blackbird (Turdus merula) populations. While mosquitoes are the primary vectors for USUV, Common Blackbirds and other avian species are exposed to other arthropod ectoparasites, such as ticks. It is unknown, however, if ticks can maintain and transmit USUV. We addressed this question using in vitro and in vivo experiments and field collected data. USUV replicated in IRE/CTVM19 Ixodes ricinus tick cells and in injected ticks. Moreover, I. ricinus nymphs acquired the virus via artificial membrane blood-feeding and maintained the virus for at least 70 days. Transstadial transmission of USUV from nymphs to adults was confirmed in 4.9% of the ticks. USUV disseminated from the midgut to the haemocoel, and was transmitted via the saliva of the tick during artificial membrane blood-feeding. We further explored the role of ticks by monitoring USUV in questing ticks and in ticks feeding on wild birds in the Netherlands between 2016 and 2019. In total, 622 wild birds and the Ixodes ticks they carried were tested for USUV RNA. Of these birds, 48 (7.7%) carried USUV-positive ticks. The presence of negative-sense USUV RNA in ticks, as confirmed via small RNA-sequencing, showed active virus replication. In contrast, we did not detect USUV in 15,381 questing ticks collected in 2017 and 2019. We conclude that I. ricinus can be infected with USUV and can transstadially and horizontally transmit USUV. However, in comparison to mosquito-borne transmission, the role of I. ricinus ticks in the epidemiology of USUV is expected to be minor.


Asunto(s)
Enfermedades de las Aves , Infecciones por Flavivirus , Flavivirus , Ixodes , Ninfa , Animales , Ixodes/virología , Ixodes/fisiología , Flavivirus/fisiología , Flavivirus/genética , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/veterinaria , Infecciones por Flavivirus/virología , Ninfa/virología , Enfermedades de las Aves/virología , Enfermedades de las Aves/transmisión , Aves/virología , Vectores Arácnidos/virología , Vectores Arácnidos/fisiología , Países Bajos , Femenino
3.
Virol J ; 21(1): 163, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044231

RESUMEN

Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Genoma Viral , Filogenia , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Animales , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/veterinaria , Humanos , Senegal , Italia , Aves/virología , ARN Viral/genética , Variación Genética , Culex/virología , Secuenciación Completa del Genoma , Caballos/virología
4.
Virus Res ; 347: 199431, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969013

RESUMEN

Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-ß production and signaling. In particular NS4A was very effective at suppressing IFN-ß production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-ß production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Flavivirus , Helicasa Inducida por Interferón IFIH1 , Interferón beta , Transducción de Señal , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Flavivirus/inmunología , Flavivirus/genética , Flavivirus/fisiología , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/inmunología , Células HEK293 , Evasión Inmune , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Interacciones Huésped-Patógeno/inmunología , Unión Proteica , Inmunidad Innata , Animales
5.
PLoS Negl Trop Dis ; 18(6): e0012295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935783

RESUMEN

Usutu virus (USUV) is a zoonotic arbovirus infecting mainly wild birds. It is transmitted by ornithophilic mosquitoes, mainly of the genus Culex from birds to birds and to several vertebrate dead-end hosts. Several USUV lineages, differing in their virulence have emerged in the last decades and now co-circulate in Europe, impacting human populations. However, their relative transmission and effects on their mosquito vectors is still not known. We thus compared the vector competence and survival of Culex pipiens mosquitoes experimentally infected with two distinct USUV lineages, EU2 and EU3, that are known to differ in their virulence and replication in vertebrate hosts. Infection rate was variable among blood feeding assays but variations between EU2 and EU3 lineages were consistent suggesting that Culex pipiens was equally susceptible to infection by both lineages. However, EU3 viral load increased with viral titer in the blood meal while EU2 viral load was high at all titers which suggest a greater replication of EU2 than EU3 in mosquito. While their relative transmission efficiencies are similar, at least at low blood meal titer, positive correlation between transmission and blood meal titer was observed for EU3 only. Contrary to published results in vertebrates, EU3 induced a higher mortality to mosquitoes (i.e. virulence) than EU2 whatever the blood meal titer. Therefore, we found evidence of lineage-specific differences in vectorial capacity and virulence to both the vector and vertebrate host which lead to balanced propagation of both viral lineages. These results highlight the need to decipher the interactions between vectors, vertebrate hosts, and the diversity of arbovirus lineages to fully understand transmission dynamics.


Asunto(s)
Culex , Infecciones por Flavivirus , Flavivirus , Mosquitos Vectores , Animales , Culex/virología , Mosquitos Vectores/virología , Virulencia , Flavivirus/patogenicidad , Flavivirus/genética , Flavivirus/fisiología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Carga Viral , Femenino , Humanos , Replicación Viral
6.
Acta Trop ; 257: 107272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885823

RESUMEN

The Orthoflavivirus ilheusense (ILHV) is an arbovirus that was first isolated in Brazil in 1944 during an epidemiologic investigation of yellow fever. Is a member of the Flaviviridae family and it belongs to the antigenic complex of the Ntaya virus group. Psorophora ferox is the primary vector of ILHV and this study presents the isolation and phylogenetic analysis of ILHV in a pool of Ps. ferox collected in the state of Goiás in 2021. Viral isolation tests were performed on Vero cells and C6/36 clones. The indirect immunofluorescence test (IFI) was used to confirm the positivity of the sample. The positive sample underwent RT-qPCR, sequencing, and phylogenetic analysis. This is the first report of ILHV circulation in this municipality and presented close relationship between this isolate and another ILHV isolate collected in the city of Belém (PA).


Asunto(s)
Culicidae , Filogenia , Animales , Brasil , Células Vero , Culicidae/virología , Chlorocebus aethiops , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Mosquitos Vectores/virología
7.
Viruses ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932175
8.
An Acad Bras Cienc ; 96(2): e20230452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922274

RESUMEN

The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.


Asunto(s)
Culicidae , Flavivirus , Mosquitos Vectores , Filogenia , Animales , Argentina , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/aislamiento & purificación , Culicidae/virología , Culicidae/clasificación , Mosquitos Vectores/virología , Mosquitos Vectores/clasificación
9.
Nat Commun ; 15(1): 5179, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898037

RESUMEN

Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.


Asunto(s)
Antivirales , Virus del Dengue , Flavivirus , Proteolisis , Internalización del Virus , Humanos , Proteolisis/efectos de los fármacos , Animales , Antivirales/farmacología , Flavivirus/efectos de los fármacos , Flavivirus/genética , Flavivirus/metabolismo , Internalización del Virus/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Virus del Dengue/genética , Culicidae/virología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Línea Celular
10.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926343

RESUMEN

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Asunto(s)
Evolución Molecular , Factor de Transcripción STAT2 , Proteínas no Estructurales Virales , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos , Ratones , Virus del Dengue/genética , Virus del Dengue/fisiología , Virus Zika/genética , Flavivirus/genética , Flavivirus/fisiología , Filogenia , Interacciones Huésped-Patógeno/genética
11.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793692

RESUMEN

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Asunto(s)
Patos , Infecciones por Flavivirus , Flavivirus , Enfermedades de las Aves de Corral , Animales , Patos/virología , Flavivirus/patogenicidad , Flavivirus/inmunología , Flavivirus/genética , Infecciones por Flavivirus/veterinaria , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/transmisión , Genoma Viral , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Vacunas Virales/inmunología , Agricultores , Anticuerpos Antivirales/sangre , Humanos
12.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38783793

RESUMEN

A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-toorder transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein-protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.


Asunto(s)
Proteínas de la Cápside , Flavivirus , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Flavivirus/patogenicidad , Flavivirus/genética , Flavivirus/fisiología , Flavivirus/metabolismo , Filogenia , Humanos , Unión Proteica , Cápside/metabolismo , Cápside/química , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos
13.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809251

RESUMEN

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Asunto(s)
Flavivirus , Ixodidae , Filogenia , Animales , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , China , Ixodidae/virología , Femenino
14.
Antiviral Res ; 227: 105915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777094

RESUMEN

The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Flavivirus , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/inmunología , Flavivirus/inmunología , Flavivirus/química , Flavivirus/genética , Animales , Virus Zika/inmunología , Virus Zika/genética , Virus Zika/química , Virus del Dengue/inmunología , Virus del Dengue/genética , Virus del Dengue/química , Multimerización de Proteína , Conformación Proteica
15.
RNA Biol ; 21(1): 14-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38797925

RESUMEN

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.


Asunto(s)
Flavivirus , Genoma Viral , Conformación de Ácido Nucleico , ARN Viral , Replicación Viral , Flavivirus/genética , Flavivirus/fisiología , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Humanos , Infecciones por Flavivirus/virología , Ensamble de Virus , Animales , Biosíntesis de Proteínas
17.
J Virol ; 98(7): e0010023, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38808973

RESUMEN

Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , ARN Viral , Vacunas Atenuadas , Vacunas Virales , Vacunas Atenuadas/inmunología , Flavivirus/inmunología , Flavivirus/genética , ARN Viral/genética , Humanos , Vacunas Virales/inmunología , Infecciones por Flavivirus/prevención & control , Infecciones por Flavivirus/virología , Animales , Desarrollo de Vacunas
18.
Virology ; 595: 110084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692132

RESUMEN

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Asunto(s)
Patos , Flavivirus , Enfermedades de las Aves de Corral , Proteínas no Estructurales Virales , Ensamble de Virus , Replicación Viral , Animales , Patos/virología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Flavivirus/genética , Flavivirus/fisiología , Enfermedades de las Aves de Corral/virología , Infecciones por Flavivirus/virología , Mutación
19.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669573

RESUMEN

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Asunto(s)
Aedes , Virus del Dengue , Mosquitos Vectores , Simbiosis , Virus Zika , Animales , Aedes/microbiología , Aedes/virología , Virus del Dengue/fisiología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Virus Zika/fisiología , Dengue/transmisión , Dengue/virología , Dengue/prevención & control , Microbioma Gastrointestinal , Acetobacteraceae/fisiología , Femenino , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Flavivirus/fisiología , Flavivirus/genética , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
20.
Viruses ; 16(4)2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675940

RESUMEN

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Asunto(s)
Aves , Infecciones por Flavivirus , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Europa (Continente)/epidemiología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , Virus del Nilo Occidental/aislamiento & purificación , Animales , Humanos , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/patogenicidad , Flavivirus/aislamiento & purificación , Flavivirus/fisiología , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/veterinaria , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Fiebre del Nilo Occidental/transmisión , Aves/virología , Culicidae/virología , Mosquitos Vectores/virología , Brotes de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA