Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int Immunopharmacol ; 141: 112933, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39186834

RESUMEN

Periodontitis is a chronic inflammatory disease that affects about 45 %-50 % of adults worldwide, but the efficacy of current clinical therapies is unsatisfactory due to the complicated periodontal immune microenvironment. Thus, developing drugs that can regulate innate immune cells (e.g., macrophages) is a potent strategy to treat periodontitis. Here, we report that phloretin, a food plant-derived natural compound, is sufficient to alleviate periodontitis through immune regulation. In vivo, phloretin treatment could significantly reduce alveolar bone resorption and periodontal inflammation in mouse periodontitis models. In vitro, phloretin could suppress proinflammatory (M1-like) polarization and cytokine release in macrophages induced by LPS. Mechanistically, the immune regulatory role of phloretin in macrophages may be due to its metabolic regulation effect. Phloretin might restore the balance of M1/M2 macrophage transition in periodontitis by inhibiting HIF-1α-mediated glycolysis and PI3k/Akt pathways, thereby reducing the proinflammatory effect and immune disorder caused by over-activated M1 macrophages. Together, this study highlights that natural compound, such as phloretin, can restore periodontal immune homeostasis by metabolic regulation of macrophages, which may provide novel insight into the treatment of periodontitis.


Asunto(s)
Glucólisis , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Macrófagos , Ratones Endogámicos C57BL , Periodontitis , Floretina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Floretina/farmacología , Floretina/uso terapéutico , Glucólisis/efectos de los fármacos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/inmunología , Periodontitis/metabolismo , Homeostasis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Lipopolisacáridos/inmunología , Humanos , Células RAW 264.7 , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico
2.
J Pharm Pharmacol ; 76(3): 201-212, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38243397

RESUMEN

OBJECTIVES: Phloretin is ubiquitous in apples (Malus domestica) and other fruits and has potential antidiabetic properties. Considering the preclinical potential of phloretin, its transition to clinical observations has unintentionally been neglected, particularly within the diabetic population. Furthermore, a comprehensive understanding of its pharmacokinetics remains elusive. This review seeks to offer valuable insights into phloretin's physical properties, pharmacokinetics, and pharmacodynamics, aiming to unveil opportunities for additional research on its therapeutic potential in the context of diabetes. KEY FINDINGS: All pharmacokinetic reports of phloretin confirm that the utilization of phloretin gets enhanced during diabetic conditions. Phloretin targets pathomechanisms such as glucose transporter 4 (GLUT4) and peroxisome proliferator's activity-activated receptor-γ (PPAR-γ) to decrease insulin resistance in diabetic conditions. Moreover, phloretin targets inflammatory, oxidative, and apoptotic signaling to minimize the progression of diabetes-associated macro- and microvascular complications. SUMMARY: The pleiotropic antidiabetic action of phloretin is mainly dependent on its pharmacokinetics. Nevertheless, further investigation into the altered pharmacokinetics of phloretin during diabetic conditions is essential. Additionally, the results derived from clinical studies utilized apples, apple extract, and supplements containing phloretin. Greater emphasis should be placed on future clinical studies to assess the potential of phloretin as a standalone compound.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Humanos , Floretina/farmacología , Floretina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Transducción de Señal
3.
Biomater Adv ; 154: 213627, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748276

RESUMEN

The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Disponibilidad Biológica , Floretina/farmacología , Floretina/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/uso terapéutico , Lípidos/uso terapéutico
4.
Endocrinol Metab (Seoul) ; 38(4): 395-405, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37533177

RESUMEN

BACKGRUOUND: Hepatic stellate cells (HSCs) are the major cells which play a pivotal role in liver fibrosis. During injury, extracellular stimulators can induce HSCs transdifferentiated into active form. Phloretin showed its ability to protect the liver from injury, so in this research we would like to investigate the effect of phloretin on succinate-induced HSCs activation in vitro and liver fibrosis in vivo study. METHODS: In in vitro, succinate was used to induce HSCs activation, and then the effect of phloretin on activated HSCs was examined. In in vivo, succinate was used to generated liver fibrosis in mouse and phloretin co-treated to check its protection on the liver. RESULTS: Phloretin can reduce the increase of fibrogenic markers and inhibits the proliferation, migration, and contraction caused by succinate in in vitro experiments. Moreover, an upregulation of proteins associated with aerobic glycolysis occurred during the activation of HSCs, which was attenuated by phloretin treatment. In in vivo experiments, intraperitoneal injection of phloretin decreased expression of fibrotic and glycolytic markers in the livers of mice with sodium succinate diet-induced liver fibrosis. These results suggest that aerobic glycolysis plays critical role in activation of HSCs and succinate can induce liver fibrosis in mice, whereas phloretin has therapeutic potential for treating hepatic fibrosis. CONCLUSION: Intraperitoneal injection of phloretin attenuated succinate-induced hepatic fibrosis and alleviates the succinate-induced HSCs activation.


Asunto(s)
Floretina , Ácido Succínico , Ratones , Animales , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Ácido Succínico/uso terapéutico , Floretina/farmacología , Floretina/metabolismo , Floretina/uso terapéutico , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control
5.
Food Funct ; 14(11): 5391-5403, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37218423

RESUMEN

Toll-like receptor-4 (TLR4) and sodium-glucose co-transporter 2 (SGLT2) signaling is involved in the pathogenesis of diabetes-associated kidney diseases. The purpose of this study was to explore the role and effect of phloretin, a TLR4 inhibitor, as an adjuvant therapy to empagliflozin, an SGLT2 inhibitor, in ischemic acute kidney injury (AKI) under diabetic conditions. To achieve this, firstly we induced type 1 diabetes using streptozotocin (55 mg per kg per intraperitoneally (i.p.)) followed by performing bilateral ischemia-reperfusion kidney injury to induce AKI in male Wistar rats. Treatment with phloretin (50 and 100 mg per kg per orally) and empagliflozin (10 mgper kg per orally) alone or in combination was administered to the diabetic rats for 4 days and 1 h before surgery. Moreover, a hypoxia-reperfusion injury was induced using sodium azide in NRK52E cells under a hyperglycemic environment to mimic the in vivo model. The cells were treated with phloretin (50 µM) and empagliflozin (100 nM) for 24 h. For biochemical analysis, plasma and urine samples were used. The kidney tissues were used to perform immunoblotting, histopathology, and immunohistochemistry. Other experiments like immunofluorescence, cell viability assay, and flow cytometry analysis were performed using the in vitro samples. The study outcomes revealed that compared to monotherapy, combination therapy of phloretin and empagliflozin was significantly effective. Phloretin and empagliflozin target the HMGB1/TLR4/MyD88/IK-ß/α/NF-κB pathway to reduce inflammation and apoptosis, in addition to their antihyperglycemic effect. Thus, phloretin, a natural dietary supplement, as an adjuvant therapy to empagliflozin can be helpful to reduce empagliflozin-associated side effects, by reducing its clinical dose and increasing its therapeutic efficacy in AKI-diabetes comorbidity.


Asunto(s)
Lesión Renal Aguda , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Masculino , Ratas , Animales , Transportador 2 de Sodio-Glucosa/efectos adversos , Transportador 2 de Sodio-Glucosa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Floretina/uso terapéutico , Ratas Wistar , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Isquemia
6.
Life Sci ; 322: 121668, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023949

RESUMEN

AIMS: The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS: In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS: Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE: In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , PPAR gamma/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/farmacología , Florizina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Floretina/farmacología , Floretina/uso terapéutico , Obesidad
7.
Apoptosis ; 28(5-6): 810-829, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36884140

RESUMEN

Colorectal carcinoma (CRC) is the third most prevalent cancer, causing a significant mortality worldwide. Present available therapies are surgery, chemotherapy including radiotherapy, and these are known to be associated with heavy side effects. Therefore, nutritional intervention in the form of natural polyphenols has been well recognised to prevent CRC. Phloretin, a known dihydrochalcone is present in apple, pear and strawberry. This has been proven to induce apoptosis in cancer cells and also exhibited anti-inflammatory activity, thus can be explored as a potential anticancer nutraceutical agent. This study demonstrated phloretin's significant in vitro anticancer activity against CRC. Phloretin suppressed cell proliferation, colony forming ability and cellular migration in human colorectal cancer HCT-116 and SW-480 cells. Results also revealed that phloretin generated reactive oxygen species (ROS) which provoked depolarization of mitochondrial membrane potential (MMP) and further contributed to cytotoxicity in colon cancer cells. Phloretin also modulated the cell cycle regulators including cyclins and cyclin-dependent kinases (CDKs) and halted cell cycle at G2/M phase. Moreover, it also induced apoptosis by regulating the expression of Bax and BCl-2. The Wnt/ß-catenin signaling is inactivated by phloretin by targeting the downstream oncogenes namely CyclinD1, c-Myc and Survivin which are involved in the proliferation and apoptosis of colon cancer cells. In our study we showed that lithium chloride (LiCl) induced the expression of ß-catenin and its target genes and the co-treatment of phloretin circumvent its effect and downregulated the Wnt/ß-catenin signaling. In conclusion, our results strongly suggested that phloretin can be utilized as a nutraceutical anticancer agent for combating CRC.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Apoptosis , beta Catenina/genética , beta Catenina/metabolismo , Floretina/farmacología , Floretina/uso terapéutico , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Vía de Señalización Wnt , Neoplasias Colorrectales/patología , Neoplasias del Colon/tratamiento farmacológico
8.
Nutrients ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079895

RESUMEN

Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development.


Asunto(s)
Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Diabetes Mellitus/tratamiento farmacológico , Desarrollo de Medicamentos , Flavonoides , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Floretina/química , Floretina/farmacología , Floretina/uso terapéutico
9.
Int Immunopharmacol ; 110: 109049, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35853279

RESUMEN

The increased level of glycolysis in macrophage aggravates lipopolysaccharide (LPS)-induced acute lung injury (ALI). Glucose transporter 1 (GLUT1) serves as a ubiquitously expressed glucose transporter, which could activate inflammatory response by mediating glycolysis. Phloretin (PHL), an apple polyphenol, is also an inhibitor of GLUT1, possessing potent anti-inflammatory effects in various diseases. However, the potential role of PHL in ALI remains unclear till now. This study aims to investigate the impacts of PHL on ALI as well as its possible mechanisms. A mouse ALI model was established via intratracheal injection of LPS. LPS-induced primary macrophages were used to mimic in vitro ALI. Mice were pretreated with low or high dosage of PHL for 7 days via intragastric administration once a day before LPS injection. The results showed that PHL pretreatment significantly prevented LPS-induced lung pathological injury and inflammatory response. Meantime, PHL pretreatment also decreased the level of glycolysis in macrophage during ALI. In terms of mechanism, PHL inhibited the mRNA and protein expression of GLUT1. In vitro experiments further showed GLUT1 overexpression in macrophage by infection with lentivirus could abolish the inhibition of inflammation and glycolysis mediated by PHL, suggesting that GLUT1 was essential for the protection of PHL. Taken together, PHL pretreatment may protect against LPS-induced ALI by inhibiting glycolysis in macrophage in a GLUT1-dependent manner, which may be a candidate against ALI in the future.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Lipopolisacáridos/farmacología , Pulmón/patología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Floretina/farmacología , Floretina/uso terapéutico
10.
J Nutr Biochem ; 107: 109062, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35609858

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) with growing incidences is a major health concern worldwide. Alteration in cellular redox homeostasis and autophagy plays a critical role in the progression of NAFLD to more severe outcomes. The lack of safe and effective therapy for the disease necessitates the exploration of new therapeutic compounds. Therefore, in the present study, we investigated the potential of phloretin to maintain redox equilibrium and prevent disease progression via modulation of autophagy in NAFLD. Free fatty acid exposed Huh7 cells were used to evaluate the efficacy of phloretin in vitro. Further, phloretin was administered orally to western diet induced NAFLD in C57BL/6J mice at different doses. The chronic exposure to fatty acids and the western diet triggered lipid accumulation in the Huh7 cells and western diet-fed mice liver, respectively. In addition, mitochondrial dysfunction, oxidative stress, inflammation and decreased hepatic autophagy were observed in disease condition. Phloretin encouraged autophagy mediated hepatic lipid clearance and restored mitochondrial membrane potential and redox homeostasis. It also reduced histological injury by reducing hepatic lipogenesis and facilitating fatty acid oxidation. Moreover, findings of the study also revealed the mitigatory effect of phloretin on inflammatory and fibrogenic markers. Altogether, the study suggested that phloretin effectively attenuates NAFLD progression via upregulating autophagy-mediated lipid breakdown and inhibits oxidative damage, hepatic inflammation and fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Autofagia , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Estrés Oxidativo , Floretina/farmacología , Floretina/uso terapéutico
11.
Food Funct ; 13(12): 6613-6622, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35622066

RESUMEN

Phloretin is a dihydrochalcone flavonoid from natural plants, which has protective activities against oxidative stress and inflammation. To date, its effect on diabetic nephropathy (DN) has not been investigated. In this study, we examined the potential role of phloretin in diabetes-induced renal damage and associated mechanisms in a type 2 diabetes mellitus (T2DM) model induced by streptozotocin (STZ) and high-fat diet (HFD) in Apolipoprotein E knockout (ApoE-/-) mice. We found that daily treatment with a low dose (20 mg kg-1) of phloretin, as a dietary supplement, significantly alleviated polyuria, proteinuria, and glomerular histopathological changes in the T2DM mice, indicating a protective effect of phloretin on diabetic renal dysfunction. In the phloretin-treated T2DM mice, major metabolic parameters, including blood glucose levels, were not altered significantly, suggesting that the observed beneficial effects of phloretin may be due to a mechanism independent of blood glucose control. Further experiments revealed that phloretin had a protective effect on glomerular podocytes as indicated by ameliorated glomerular basement membrane (GBM) thickening and podocyte foot process effacement. Moreover, phloretin treatment restored levels of nephrin and podocin, two podocyte slit diaphragm proteins that were decreased in T2DM mice. Our results indicate that low-dose phloretin treatment has a protective effect on podocytes in DN via a non-hypoglycemic mechanism in preserving nephrin and podocin expression levels. These data suggest that phloretin may be exploited as a novel therapeutic agent for DN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Floretina/farmacología , Floretina/uso terapéutico , Podocitos/metabolismo , Podocitos/patología
12.
Pharmacol Res ; 179: 106205, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381340

RESUMEN

Diabetic cardiovascular complications contribute more than half of diabetes mortality. Endothelial damage and subsequent pathological changes play a key role in this process. Phloretin, a plant-derived dihydrochalcone compound, was reported to have the activities in regulating metabolism homeostasis and anti-inflammation. However, its effects and the mechanism on early stage endothelial injury caused by diabetes are not clear yet. In our present study, human umbilical vein endothelial cells (HUVECs) were stimulated by high glucose or advanced glycation end products (AGEs) to induce endothelial damage, and streptozotocin (STZ) -induced diabetes mouse model was used for in vivo study. Our results showed that phloretin effectively reduced endothelial damage marker monocyte chemotactic protein-1 (MCP1) as well as pro-calcification factors bone morphogenetic protein-2 (BMP2) and receptor activator of NF-κB ligand (RANKL) expression, reversed the increased vimentin and decreased CD31 dose-dependently in vitro and in vivo. Phloretin had no effect on blood glucose level. However, it ameliorated endothelial injury and vascular fibrosis in diabetic mice. Further experiments revealed that phloretin could enhance AMP activated protein kinase (AMPK) activation and upregulate peroxidase proliferator activated receptor-gamma coactivator-lα (PGC1α) level, and inhibit the activation of TGFß-Smad2-Snail signalling pathway which was abrogated by AMPK inhibitor, providing a rational mechanism that AMPK activation was required for the effects of phloretin on endothelial injury and endothelial-mesenchymal transformation (EndMT). Our data reveal a new role of phloretin in protection of diabetic endothelial damage via AMPK-dependent anti-EndMT activation, and also provide a potential therapeutic way for diabetic endothelial damage and its subsequent cardiovascular complications.


Asunto(s)
Diabetes Mellitus Experimental , Floretina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Floretina/farmacología , Floretina/uso terapéutico , Transducción de Señal
13.
Food Funct ; 12(24): 12421-12433, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34788781

RESUMEN

Phloretin, a dihydrochalcone, widely exists in the fruits of apple trees and crabapple trees (Malus prunifolia) with multiple biological activities. Presently, we studied the function of phloretin on the attenuation of hepatic steatosis and further explored the underlying mechanisms both in vitro and in vivo. Male C57BL/6J mice were fed a normal diet or high fat diet (HFD) with or without phloretin (100 mg kg-1) for 12 weeks. HepG2 cells were induced by 200 µM palmitic acid (PA) and co-incubated with phloretin (50 µM) for 24 h. The results showed that phloretin treatment significantly decreased the accumulation of lipids in the liver of the HFD-fed C57BL/6J mice and PA-induced HepG2 cells. Also, phloretin effectively ameliorated hepatic steatosis via promoting fatty acid ß-oxidation (FAO). This biological activity of phloretin was closely related to its capacity to improve mitochondrial dysfunction, including the promotion of mitochondrial biosynthesis and inhibition of mitochondrial swelling through the AMPK-dependent SIRT1/PGC-1α and SIRT3/CypD signaling pathways, respectively. These results demonstrate that phloretin effectively improves mitochondrial function and ameliorates HFD-induced hepatic steatosis through an AMPK-dependent signaling pathway.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Frutas , Malus , Mitocondrias/efectos de los fármacos , Floretina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Alimentos Funcionales , Células Hep G2/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Floretina/uso terapéutico , Transducción de Señal
14.
J Neuroinflammation ; 18(1): 148, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34218792

RESUMEN

BACKGROUND: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. METHODS: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. RESULTS: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5' AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. CONCLUSIONS: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Autofagia/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Floretina/farmacología , Animales , Autofagia/fisiología , Células Cultivadas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Floretina/uso terapéutico
15.
Bioengineered ; 12(1): 2420-2431, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34167447

RESUMEN

Oral candidiasis is one of the most common types of fungal infection caused by Candida albicans (C. albicans). The present study aims to investigate the antifungal effects of phloretin (a dihydrochalcone flavonoid) against the C. albicans pathogenicity. In this work, we treated C. albicans SC5314 with 37.28, 74.55, or 149.10 µg/mL (equivalent to 0.5×, 1× or 2× MIC) phloretin in vitro. Besides, we established a mice model of oral candidiasis by a sublingual infection of C. albicans suspension (1 × 107 colony-forming unit/mL), and mice were treated with phloretin (3.73 or 7.46 mg/mL, which were equivalent to 50× or 100× MIC) twice a day starting on day one post-infection. The results showed that the MIC of phloretin against C. albicans was 74.55 µg/mL. Phloretin exerted antifungal activity by inhibiting the biofilm formation and suppressing the yeast-to-hyphae transition upon the downregulation of hypha-associated genes including enhanced adherence to polystyrene 1, the extent of cell elongation gene 1, hyphal wall protein 1 gene, and agglutinin-like sequence gene 3. Next, phloretin repressed the secretion of proteases and phospholipases via reducing the expression of protease-encoding genes secreted aspartyl proteases (SAP)1 and SAP2, as well as phospholipase B1. Subsequently, the in vivo antifungal activity of phloretin was testified by the reverse of the enhanced lesion severity, inflammatory infiltration, and the increased colony-forming unit counts caused by C. albicans of tongue tissues in oral candidiasis mice. In conclusion, phloretin suppressed the pathogenicity and virulence factors against C. albicans both in vivo and in vitro.


Asunto(s)
Candida albicans/patogenicidad , Floretina/farmacología , Factores de Virulencia/antagonistas & inhibidores , Animales , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Modelos Animales de Enfermedad , Femenino , Hifa/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Boca/microbiología , Boca/patología , Péptido Hidrolasas/metabolismo , Floretina/química , Floretina/uso terapéutico , Fosfolipasas/metabolismo , Factores de Virulencia/metabolismo
16.
J Med Chem ; 64(8): 4450-4461, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33819035

RESUMEN

Overexpression of glucose transporters (GLUTs) in colorectal cancer cells is associated with 5-fluorouracil (1, 5-FU) resistance and poor clinical outcomes. We designed and synthesized a novel GLUT-targeting drug conjugate, triggered by glutathione in the tumor microenvironment, that releases 5-FU and GLUTs inhibitor (phlorizin (2) and phloretin (3)). Using an orthotopic colorectal cancer mice model, we showed that the conjugate exhibited better antitumor efficacy than 5-FU, with much lower exposure of 5-FU during treatment and without significant side effects. Our study establishes a GLUT-targeting theranostic incorporating a disulfide linker between the targeting module and cytotoxic payload as a potential antitumor therapy.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Fluorouracilo/uso terapéutico , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Semivida , Humanos , Ratones , Ratones Endogámicos BALB C , Floretina/química , Floretina/metabolismo , Floretina/uso terapéutico , Florizina/química , Florizina/metabolismo , Florizina/uso terapéutico , Relación Estructura-Actividad , Distribución Tisular
17.
Artículo en Inglés | MEDLINE | ID: mdl-32579511

RESUMEN

BACKGROUND: Adverse effects associated with current therapy for Ulcerative colitis (UC) over prolonged treatment periods and the high relapse rate limit their use. Incorporating fruits as regular diet has beneficial role in the management of UC. Phloretin, a dihydrochalcone of apple is reported for its anti-oxidant and anti-inflammatory effects. Our study aims to evaluate the effectiveness of phloretin on experimentally induced ulcerative colitis in rats. METHODS: In vitro study was performed using Raw 264.7 cells stimulated with LPS (1µg/mL) and in in-vivo study, colitis was induced by intra rectal administration of 4% Acetic acid. Phloretin (50 mg/kg) was given orally for 3 days to Wistar rats after induction for the post-treatment group and 1 day before induction to the pre-treatment group. Macroscopical, biochemical and histopathological evaluations were performed to assess the effectiveness. RESULTS: A concentration dependent inhibition of MPO and iNOS activity was obtained in LPS stimulated neutrophil cells. Phloretin exerted ameliorative effect in both pre and post-treatment groups by restoring plasma ALP and LDH level and reduce inflammatory markers like myeloperoxidase, nitric oxide and eosinophil peroxidase level as well as downregulates colon ICAM-1 gene in acetic acid induced ulcerative colitis in rats. Antioxidative potency was confirmed by restoring tissue GSH level. Phloretin prevents mucosal damage and it was confirmed by histopathological analysis. CONCLUSION: Collectively, our findings provide evidence that phloretin might be useful as a natural therapeutic agent in the management of UC as well as may pose a promising outcome for future clinical usage.


Asunto(s)
Colitis/tratamiento farmacológico , Inmunidad/efectos de los fármacos , Inflamación/tratamiento farmacológico , Floretina/uso terapéutico , Ácido Acético , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/inmunología , Colon/metabolismo , Inflamación/inducido químicamente , Ratones , Células RAW 264.7 , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
18.
Oxid Med Cell Longev ; 2020: 7690845, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566099

RESUMEN

To explore fresh strategies in colorectal cancer (CRC) chemotherapy, we evaluated the capability of the ruthenium-phloretin complex in exterminating colon cancer by effectively addressing multiple apoptotic mechanisms on HT-29 cancer cells together with an animal model of colorectal cancer activated by 1,2-dimethylhydrazine and dextran sulfate sodium. Our current approach offers tangible evidence of the application of the ruthenium-phloretin complex in future chemotherapy. The complex triggers intrinsic apoptosis triggered by p53 and modulates the Akt/mTOR pathway along with other inflammatory biomarkers. The ruthenium-phloretin complex has been synthesized and successfully characterized by numerous spectroscopic methodologies accompanied by DPPH, FRAP, and ABTS assays assessing its antioxidant potential. Studies conducted in human cell lines revealed that the complex improved levels of p53 and caspase-3 while diminishing the activities of VEGF and mTOR, triggers apoptosis, and induces fragmentation of DNA in the HT-29 cells. Toxicity studies were conducted to identify the therapeutic doses of the novel complex in animal models. The outcomes of the in vivo report suggest that the complex was beneficial in repressing multiplicity of aberrant crypt foci as well as hyperplastic lesions and also promoted increased levels of CAT, SOD, and glutathione. In addition, the ruthenium-phloretin complex was able to control cell proliferation and boosted apoptotic outbursts in cancer cells associated with the increase in cellular response towards Bax while diminishing responses towards Bcl-2, NF-κB, and MMP-9. Our observations from the experiments deliver testament that the ruthenium-phloretin complex has the potential to act as a promising chemotherapeutic agent in colorectal cancer because it can affect the growth of ACF and hyperplastic abrasions in the colon tissues by evoking cell death.


Asunto(s)
Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Floretina/uso terapéutico , Rutenio/uso terapéutico , Focos de Criptas Aberrantes/patología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Benzotiazoles/química , Compuestos de Bifenilo/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/sangre , ADN/metabolismo , Femenino , Depuradores de Radicales Libres/farmacología , Células HT29 , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Oxidación-Reducción , Floretina/química , Floretina/farmacología , Picratos/química , Rutenio/química , Rutenio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfónicos/química , Pruebas de Toxicidad , Proteína X Asociada a bcl-2/metabolismo
19.
J BUON ; 25(1): 308-313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277647

RESUMEN

PURPOSE: Studies have shown that Phloretin exerts anticancer effects on several types of cancer cells. Nonetheless, the anticancer effects of Phloretin have not been fully explored against the human gastric cancer cells. Therefore, this study was undertaken to evaluate the anticancer effects of Phloretin against the human gastric cancer cells. METHODS: Cell proliferation was evaluated by WST-1 assay while cell cycle analysis was carried out by flow cytometry. The effects on cell migration and invasion were evaluated by wound healing assay and transwell assays, respectively. Electron microscopy and western blot methods were used to study effects on autophagy and ERK1/2/MAPK signalling pathway. RESULTS: The results showed that Phloretin inhibited the proliferation rate of the human SNU-1 gastric cancer cells and showed an IC50 of 18 µM. However, Phloretin showed very high IC50 (80 µM) against the normal GES-1 normal gastric cells. Electron microscopy showed that Phloretin triggered autophagy in the SNU-1 gastric cancer cells which was accompanied by enhancement in the expression of LC3B II and Beclin 1. Cell cycle analysis showed that Phloretin caused accumulation of the SNU-1 cells in the G0/G1 phase of the cell cycle triggering G0/G1 cell cycle arrest. The G0/G1 arrest of SNU-1 cells was also associated with depletion of cyclin D1 and D2 expression. Wound healing and transwell assays showed that Phloretin suppressed the migration of the SNU-1 gastric cancer cells, suggestive of the anti-metastatic potential of this molecule. Finally, this molecule also blocked the ERK1/2/MAPK signalling pathway in SNU-1 cells in a concentration-dependent manner. CONCLUSIONS: Phloretin may prove beneficial as a promising drug candidate for gastric cancer treatment provided further studies are carried out on it, especially toxicological studies.


Asunto(s)
Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Flavonoides/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Invasividad Neoplásica/genética , Floretina/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Flavonoides/farmacología , Humanos , Floretina/farmacología , Neoplasias Gástricas/patología
20.
J BUON ; 25(1): 344-349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277653

RESUMEN

PURPOSE: Phloretin is one of the important polyphenolics abundantly present across the plant kingdom. Studies have reported the anticancer effects of Phloretin against different human cancer cells. Nonetheless, the anticancer effects of Phloretin have not been explored against the human oral cancer cells. Therefore this study was designed to investigate the anticancer effects of Phloretin against the human oral cancer cells. METHODS: CCK-8 assay was used for the determination of cell viability. Annexin V/propidium iodide (PI) staining and flow cytometry were used for necrosis detection and cell cycle analysis, respectively. Wound healing assay was used for cell migration analysis. Western blot analysis was used for protein expression analysis. RESULTS: The results showed that Phloretin suppressed the proliferation rate of the human SCC-1 oral cancer cells and showed an IC50 of 12.5 µM. Nonetheless, Phloretin had negligible effects on the proliferation rate of the EBTr normal oral cells. DAPI staining showed that Phloretin did not induce apoptosis and western blot showed that it had no apparent effects on the Bax and Bcl-2 expression. Nonetheless annexin V/PI staining showed that Phloretin caused cell death in SCC-1 oral cancer cells. Flow cytometric analysis showed that Phloretin caused increase in the reactive oxygen species (ROS) levels of the SCC-1 cells in a time and dose-dependent manner. Cell cycle analysis showed that Phloretin caused increase in the percentage of the SCC-1 cells in the G0/G1 phase of the cell cycle leading to G0/G1 cell cycle arrest. The G0/G1 arrest of SCC-1 cells was also associated with depletion of cyclin D1, CDK4 and CDK6 expression. Wound healing assay was also performed which showed that Phloretin suppressed the migration of the SCC-1 oral cancer cells, indicative of the anti-metastatic potential of Phloretin. CONCLUSION: Phloretin exhibits significant growth inhibitory effects on the human oral cancer cells and may prove beneficial in oral cancer treatment.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Floretina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Muerte Celular , Línea Celular Tumoral , Humanos , Neoplasias de la Boca/patología , Floretina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA