Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Med Sci (Paris) ; 36(10): 945-948, 2020 Oct.
Artículo en Francés | MEDLINE | ID: mdl-33026341

RESUMEN

More than 10 million enslaved Africans were transported to the Americas between 1500 and 1900. Recent genetic studies investigate regional African ancestry components in present-day Africa-Americans, and allow comparison with the extensive records documenting these deportations. The genetic evidence generally agrees with the historical records but brings additional insights in this dark episode of human history.


Asunto(s)
Negro o Afroamericano/genética , Personas Esclavizadas , Esclavización/historia , Genética de Población , África , Océano Atlántico , Comercio/historia , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Personas Esclavizadas/historia , Flujo Génico/fisiología , Variación Genética , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Humanos , Patrón de Herencia/genética , Estados Unidos
2.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386546

RESUMEN

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Asunto(s)
Antropología/métodos , ADN Antiguo/análisis , Flujo Génico/genética , América Central , ADN Mitocondrial/genética , Flujo Génico/fisiología , Genética de Población/métodos , Haplotipos , Humanos , Análisis de Secuencia de ADN , América del Sur
3.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470400

RESUMEN

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
4.
Cell ; 181(5): 1158-1175.e28, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470401

RESUMEN

Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
5.
Sci Rep ; 10(1): 6143, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273546

RESUMEN

Pollen dispersal is one of the main ways of gene flow. In the past years, rice pollen dispersal and gene flow have been well studies. However, there is much dispute whether the risk of pollen dispersal and gene flow continuously increases with the source area. A Lagrangian stochastic model was used to simulate the pollen depositions at different distances from different pollen source areas. The field experiments showed a good fit in the pollen depositions. The larger the source area, the more the pollen grains were deposited at each distance, with the pollen dispersal distance increasing accordingly. However, this effect gradually leveled off as the source area increased. In the large-area of pollen source, we found a significantly higher saturation point for the amount of pollen deposition. Once the source area exceeded 1000 × 1000 m2, the pollen deposition no longer increased, even if the source area continued to increase, indicating the "critical source area" of rice pollen dispersal. However, a 100 × 100 m2 critical source area for conventional rice and hybrid rice was sufficient, while the critical source area for the sterile line was about 230 × 230 m2.


Asunto(s)
Flujo Génico , Oryza/fisiología , Polinización , Flujo Génico/fisiología , Modelos Estadísticos , Oryza/genética , Polen , Polinización/fisiología
6.
Biol Rev Camb Philos Soc ; 95(4): 1055-1072, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32233014

RESUMEN

With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra-specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long-distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta-population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.


Asunto(s)
Evolución Biológica , Fenómenos Ecológicos y Ambientales/fisiología , Ecosistema , Variación Genética/genética , Animales , Elementos Transponibles de ADN/fisiología , Epigénesis Genética/fisiología , Flujo Génico/fisiología , Flujo Genético , Geografía , Modelos Genéticos , Filogenia
7.
PLoS One ; 14(2): e0212561, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30807591

RESUMEN

Foraging behaviors that impact gene flow can guide the design of pollinator strategies to mitigate gene flow. Reduced gene flow is expected to minimize the impact of genetically engineered (GE) crops on feral and natural populations and to facilitate the coexistence of different agricultural markets. The goal of this study is to link foraging behavior to gene flow and identify behaviors that can help predict gene flow for different bee species. To reach this goal, we first examined and compared the foraging behaviors of three distinct bee species, the European honey bee, Apis mellifera L., the common eastern bumble bee, Bombus impatiens Cr., and the alfalfa leafcutting bee, Megachile rotundata F., foraging on Medicago sativa flowers. Each foraging behavior investigated differed among bee species. Both social bees exhibited directionality of movement and had similar residence, in contrast to the random movement and shorter residence of the solitary bee. Tripping rate and net distance traveled differed among the three bee species. We ranked each behavior among bee species and used the relative ranking as gene flow predictor before testing the predictions against empirical gene flow data. Tripping rate and net distance traveled, but not residence, predicted relative gene dispersal among bee species. Linking specific behaviors to gene flow provides mechanisms to explain differences in gene flow among bee species and guides the development of management practices to reduce gene flow. Although developed in one system, the approach developed here can be generalized to different plant/pollinator systems.


Asunto(s)
Abejas/fisiología , Conducta Alimentaria/fisiología , Flujo Génico/fisiología , Medicago sativa/genética , Modelos Genéticos , Polen/genética , Polinización/fisiología , Animales , Especificidad de la Especie
8.
Proc Natl Acad Sci U S A ; 115(47): 12011-12016, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397131

RESUMEN

Natal dispersal is a demographic trait with profound evolutionary, ecological, and behavioral consequences. However, our understanding of the adaptive value of dispersal patterns is severely hampered by the difficulty of measuring the relative fitness consequences of alternative dispersal strategies in natural populations. This is especially true in social species, in which natal philopatry allows kin selection to operate, so direct and indirect components of inclusive fitness have to be considered when evaluating selection on dispersal. Here, we use lifetime reproductive success data from a long-term study of a cooperative breeder, the long-tailed tit Aegithalos caudatus, to quantify the direct and indirect components of inclusive fitness. We show that dispersal has a negative effect on the accrual of indirect fitness, and hence inclusive fitness, by males. In contrast, the inclusive, predominantly direct, fitness of females increases with dispersal distance. We conclude that the conflicting fitness consequences of dispersal in this species result in sexually antagonistic selection on this key demographic parameter.


Asunto(s)
Migración Animal/fisiología , Preferencia en el Apareamiento Animal/fisiología , Conducta Sexual Animal/fisiología , Animales , Conducta Animal/fisiología , Evolución Biológica , Cruzamiento , Conducta Cooperativa , Femenino , Flujo Génico/fisiología , Masculino , Passeriformes/fisiología , Dinámica Poblacional , Reproducción , Pájaros Cantores/fisiología
9.
PLoS Genet ; 14(7): e1007510, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975688

RESUMEN

Spatially structured plant populations with diverse adaptations provide powerful models to investigate evolution. Human-generated ruderal habitats are abundant and low-competition, but are challenging for plants not adapted to them. Ruderal habitats also sometimes form networked corridors (e.g. roadsides and railways) that allow rapid long-distance spread of successfully adapted variants. Here we use transcriptomic and genomic analyses, coupled with genetic mapping and transgenic follow-up, to understand the evolution of rapid cycling during adaptation to railway sites in autotetraploid Arabidopsis arenosa. We focus mostly on a hybrid population that is likely a secondary colonist of a railway site. These mountain railway plants are phenotypically similar to their cosmopolitan cousins. We thus hypothesized that colonization primarily involved the flow of adaptive alleles from the cosmopolitan railway variant. But our data shows that it is not that simple: while there is evidence of selection having acted on introgressed alleles, selection also acted on rare standing variation, and new mutations may also contribute. Among the genes we show have allelic divergence with functional relevance to flowering time are known regulators of flowering, including FLC and CONSTANS. Prior implications of these genes in weediness and rapid cycling supports the idea that these are "evolutionary hotspots" for these traits. We also find that one of two alleles of CONSTANS under selection in the secondary colonist was selected from rare standing variation in mountain populations, while the other was introgressed from the cosmopolitan railway populations. The latter allele likely arose in diploid populations over 700km away, highlighting how ruderal populations could act as allele conduits and thus influence local adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/fisiología , Evolución Molecular , Interacción Gen-Ambiente , Tetraploidía , Alelos , Mapeo Cromosómico , Flores/genética , Perfilación de la Expresión Génica , Flujo Génico/fisiología , Genes de Plantas/genética , Variación Genética , Vías Férreas , Selección Genética/fisiología
10.
Sci Rep ; 8(1): 9354, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921956

RESUMEN

Long-distance dispersal is believed to strongly influence coral reef population dynamics across the Tropical Pacific. However, the spatial scale and strength at which populations are potentially connected by dispersal remains uncertain. To determine the patterns in connectivity between the Eastern (ETP) and Central Tropical Pacific (CTP) ecoregions, we used a biophysical model incorporating ocean currents and larval biology to quantify the seascape-wide dispersal potential among all population. We quantified the likelihood and determined the oceanographic conditions that enable the dispersal of coral larvae across the Eastern Pacific Barrier (EP-Barrier) and identified the main connectivity pathways and their conservation value for dominant reef-building corals. Overall, we found that coral assemblages within the CTP and ETP are weakly connected through dispersal. Although the EP-Barrier isolates the ETP from the CTP ecoregion, we found evidence that the EP-Barrier may be breached, in both directions, by rare dispersal events. These rare events could explain the evolutionary genetic similarity among populations of pocilloporids in the ecoregions. Moreover, the ETP may function as a stronger source rather than a destination, providing potential recruits to CTP populations. We also show evidence for a connectivity loop in the ETP, which may positively influence long-term population persistence in the region. Coral conservation and management communities should consider eight-key stepping stone ecoregions when developing strategies to preserve the long-distance connectivity potential across the ETP and CTP.


Asunto(s)
Antozoos/crecimiento & desarrollo , Animales , Arrecifes de Coral , Flujo Génico/fisiología , Genética de Población , Geografía , Oceanografía , Dinámica Poblacional
11.
PLoS Genet ; 14(2): e1007155, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432421

RESUMEN

By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.


Asunto(s)
Genoma de Planta , Tasa de Mutación , Mutación/fisiología , Desarrollo de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cruzamientos Genéticos , Evolución Molecular Dirigida , Evolución Molecular , Flujo Génico/fisiología , Especies Introducidas , Fenotipo , Filogenia , Malezas/genética , Malezas/crecimiento & desarrollo , Selección Genética , Análisis de Secuencia de ADN
12.
Plant Biol (Stuttg) ; 20(1): 93-100, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29063726

RESUMEN

Variation in flowering phenology is common in natural populations, and is expected to be, together with inter-mate distance, an important driver of effective pollen dispersal. In populations composed of plants with temporally separated sexual phases (i.e. dichogamous or heterodichogamous populations), pollen-mediated gene flow is assumed to reflect phenological overlap between complementary sexual phases. In this study, we conducted paternity analyses to test this hypothesis in the temporally dimorphic tree Acer opalus. We performed spatially explicit analyses based on categorical and fractional paternity assignment, and included tree size, pair-wise genetic relatedness and morph type as additional predictors. Because differences between morphs in flowering phenology may also influence pollination distances, we modelled separate pollen dispersal kernels for the two morphs. Extended phenological overlap between male and female phases (mainly associated with inter-morph crosses) resulted in higher siring success after accounting for the effects of genetic relatedness, morph type and tree size, while reduced phenological overlap (mainly associated with intra-morph crosses) resulted in longer pollination distances achieved. Siring success also increased in larger trees. Mating patterns could not be predicted by phenology alone. However, as heterogeneity in flowering phenology was the single morph-specific predictor of siring success, it is expected to be key in maintaining the temporal dimorphism in A. opalus, by promoting not only a prevalent pattern of inter-morph mating, but also long-distance pollination resulting from intra-morph mating events.


Asunto(s)
Acer/fisiología , Flujo Génico , Polen/fisiología , Caracteres Sexuales , Árboles/fisiología , Acer/genética , Flujo Génico/fisiología , Polinización , Factores de Tiempo , Árboles/genética
13.
Sci Rep ; 7(1): 13163, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030574

RESUMEN

Bed bugs (Cimex lectularius) provide a unique opportunity to understand speciation and host-associated divergence in parasites. Recently, two sympatric but genetically distinct lineages of C. lectularius were identified: one associated with humans and one associated with bats. We investigated two mechanisms that could maintain genetic differentiation in the field: reproductive compatibility (via mating crosses) and aggregation fidelity (via two-choice sheltering assays). Effects were assessed at the intra-lineage level (within human-associated bed bugs), inter-lineage level (between human- and bat-associated bed bugs), and inter-species level (between C. lectularius and Cimex pipistrelli [bat bug]). Contrary to previous reports, bed bugs were found to be reproductively compatible at both the intra- and inter-lineage levels, but not at the inter-species level (although three hybrids were produced, one of which developed into an adult). Lineage- and species-specific aggregation fidelity was only detected in 8% (4 out of 48) of the aggregation fidelity assays run. These results indicate that under laboratory conditions, host-associated lineages of bed bugs are reproductively compatible, and aggregation pheromones are not capable of preventing gene flow between lineages.


Asunto(s)
Chinches/fisiología , Reproducción/fisiología , Animales , Chinches/genética , Conducta Animal/fisiología , Distribución de Chi-Cuadrado , Femenino , Flujo Génico/genética , Flujo Génico/fisiología , Masculino , Reproducción/genética
14.
Sci Rep ; 6: 32046, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27534370

RESUMEN

Paedomorphosis and metamorphosis are two major developmental processes that characterize the evolution of complex life cycles in many lineages. Whereas these processes were fixed in some taxa, they remained facultative in others, with alternative phenotypes expressed in the same populations. From a genetic perspective, it is still unknown whether such phenotypes form a single population or whether they show some patterns of isolation in syntopy. This has deep implications for understanding the evolution of the phenotypes, i.e. towards their persistence or their fixation and speciation. Newts and salamanders are excellent models to test this hypothesis because they exhibit both developmental processes in their populations: the aquatic paedomorphs retain gills, whereas the metamorphs are able to colonize land. Using microsatellite data of coexisting paedomorphic and metamorphic palmate newts (Lissotriton helveticus), we found that they formed a panmictic population, which evidences sexual compatibility between the two phenotypes. The high gene flow could be understood as an adaptation to unstable habitats in which phenotypic plasticity is favored over the fixation of developmental alternatives. This makes then possible the persistence of a polyphenism: only metamorphosis could be maintained in case of occasional drying whereas paedomorphosis could offer specific advantages in organisms remaining in water.


Asunto(s)
Evolución Biológica , Flujo Génico/fisiología , Salamandridae/genética , Urodelos/genética , Animales , Teorema de Bayes , ADN/análisis , ADN/metabolismo , Ecosistema , Variación Genética , Genotipo , Metamorfosis Biológica , Repeticiones de Microsatélite/genética , Fenotipo , Reacción en Cadena de la Polimerasa
15.
PLoS One ; 11(3): e0150950, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26964094

RESUMEN

Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise.


Asunto(s)
Flujo Génico/fisiología , Variación Genética/fisiología , Modelos Genéticos , Rhizophoraceae/genética , Humedales , Océano Atlántico , Camerún
16.
PLoS One ; 11(3): e0150810, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26974163

RESUMEN

Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.


Asunto(s)
Aves/fisiología , Ecosistema , Flujo Génico/fisiología , Animales , Isótopos/metabolismo , América del Norte
17.
PLoS One ; 11(3): e0148967, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26974333

RESUMEN

Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.


Asunto(s)
Flujo Génico/fisiología , Familia de Multigenes/fisiología , Ursidae/genética , Animales , Regiones Árticas , Canadá , Femenino , Masculino
18.
PLoS One ; 11(3): e0148842, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26954014

RESUMEN

Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.


Asunto(s)
Biodiversidad , Especies en Peligro de Extinción , Lagomorpha/fisiología , Modelos Biológicos , Animales , Flujo Génico/fisiología , Humanos
19.
PLoS One ; 10(11): e0139630, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26536360

RESUMEN

Ixodes scapularis, the tick vector of the Lyme disease spirochete, is distributed over most of the eastern United States, but >80% of all Lyme disease cases occur in the northeast. The role that genetic differences between northern and southern tick populations play in explaining this disparate distribution of Lyme disease cases is unclear. The present study was conducted with 1,155 SNP markers in eight nuclear genes; the 16S mitochondrial gene was examined for comparison with earlier studies. We examined 350 I. scapularis from 7 states covering a representative area of the species. A demographic analysis using Bayesian Extended Skyline Analysis suggested that I. scapularis populations in Mississippi and Georgia began expanding 500,000 years ago, those in Florida and North Carolina 200,000 years ago and those from Maryland and New Jersey only during the past 50,000 years with an accompanying bottleneck. Wisconsin populations only began expanding in the last 20,000 years. Analysis of current migration patterns suggests large amounts of gene flow in northern collections and equally high rates of gene flow among southern collections. In contrast there is restricted and unidirectional gene flow between northern and southern collections, mostly occurring from northern into southern populations. Northern populations are characterized by nymphs that quest above the leaf litter, are easy to collect by flagging, frequently feed on mammals such as rodents and shrews, commonly attach to people, and about 25% of which are infected with B. burgdorferi. If there is a genetic basis for these behaviors, then the patterns detected in this study are of concern because they suggest that northern I. scapularis populations with a greater ability to vector B. burgdorferi to humans are expanding south.


Asunto(s)
Flujo Génico/fisiología , Ixodes/genética , Alelos , Animales , Vectores Arácnidos/genética , Teorema de Bayes , Borrelia burgdorferi/genética , ADN Mitocondrial/genética , Variación Genética , Humanos , Ixodes/clasificación , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/patología , Filogenia , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética , Estados Unidos
20.
Nat Commun ; 6: 7960, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268845

RESUMEN

In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.


Asunto(s)
Capsella/genética , Flujo Génico/fisiología , Polimorfismo Genético , Alelos , Proteínas Bacterianas , Evolución Biológica , Exotoxinas , Regulación de la Expresión Génica de las Plantas/fisiología , Haplotipos , Proteínas de la Membrana , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA