Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Funct Integr Genomics ; 24(4): 137, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138666

RESUMEN

We aimed to explore the aberrant expression status of hsa-miR-141-3p and dual-specificity protein phosphatase 1 (DUSP1) and their relative mechanisms in uterine cervical carcinoma (UCC).Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was conducted to detect the expression of hsa-miR-141-3p. Immunohistochemical (IHC) staining was performed to examine the expression of DUSP1 in UCC. Gene chips and RNA-seq datasets were also obtained to assess the expression level. Integrated standardized mean difference (SMD) was calculated to evaluate the expression status of hsa-miR-141-3p in UCC tissues comprehensively. DUSP1-overexpression and hsa-miR-141-3p-inhibition HeLa cells were established, and CCK-8, transwell, wound healing, cell cycle, and apoptosis assays were implemented. The targets of hsa-miR-141-3p were obtained with online tools, and the combination of hsa-miR-141-3p and DUSP1 was validated via dual-luciferase reporter assay. Single-cell RNA-seq data were analyzed to explore hsa-miR-141-3p and DUSP1 in different cells. An integrated SMD of 1.41 (95% CI[0.45, 2.38], p = 0.0041) with 558 samples revealed the overexpression of hsa-miR-141-3p in UCC tissues. And the pooled SMD of -1.06 (95% CI[-1.45, -0.66], p < 0.0001) with 1,268 samples indicated the downregulation of DUSP1. Inhibition of hsa-miR-141-3p could upregulate DUSP1 expression and suppress invasiveness and metastasis of HeLa cells. Overexpression of DUSP1 could hamper proliferation, invasion, and migration and boost apoptosis and distribution of G1 phase. The dual-luciferase reporter assay validated the combination of hsa-miR-141-3p and DUSP1. Moreover, the targets of hsa-miR-141-3p were mainly enriched in the MAPK signaling pathway and activated in fibroblasts and endothelial cells. The current study illustrated the upregulation of hsa-miR-141-3p and the downregulation of DUSP1 in UCC tissues. Hsa-miR-141-3p could promote UCC progression by targeting DUSP1.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , MicroARNs , Regulación hacia Arriba , Neoplasias del Cuello Uterino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Células HeLa , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis , Movimiento Celular , Progresión de la Enfermedad
2.
Sci Rep ; 14(1): 15007, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951654

RESUMEN

Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1-/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1-/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1-/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.


Asunto(s)
Carcinoma de Células Escamosas , Progresión de la Enfermedad , Fosfatasa 1 de Especificidad Dual , Factores de Transcripción SOXB1 , Neoplasias de las Glándulas Salivales , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Ratones , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
3.
Phytomedicine ; 132: 155880, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053246

RESUMEN

BACKGROUND: There is currently no specific therapeutic drug available for heart failure in clinical practice. Numerous studies have validated the efficacy of Ginsenoside Rb1, an active component found in various herbal remedies used for heart failure treatment, in effectively ameliorating myocardial ischemia. However, the precise mechanism of action and molecular targets of Ginsenoside Rb1 remain unclear. PURPOSE: This study aims to explore the molecular mechanisms through which Ginsenoside Rb1 synergistically modulates the gut flora and mitochondrial quality control network in heart failure by targeting the DUSP-1-TMBIM-6-VDAC1 axis. STUDY DESIGN: This study utilized DUSP-1/VDAC1 knockout (DUSP-1-/-/VDAC1-/-) and DUSP-1/VDAC1 transgenic (DUSP-1+/+/VDAC1+/+) mouse models of heart failure, established through Transverse Aortic Constriction (TAC) surgery and genetic modification techniques. The mice were subsequently subjected to treatment with Ginsenoside Rb1. METHODS: A series of follow-up multi-omics analyses were conducted, including assessments of intestinal flora, gene transcription sequencing, single-cell databases, and molecular biology assays of primary cardiomyocytes, to investigate the mechanism of action of Ginsenoside Rb1. RESULTS: Ginsenoside Rb1 was found to have multiple regulatory mechanisms on mitochondria. Notably, DUSP-1 was discovered to be a crucial molecular target of Ginsenoside Rb1, controlling both intestinal flora and mitochondrial function. The regulatory effects of DUSP-1 on inflammation and mitochondrial quality control were mediated by changes in TMBIM-6 and VDAC1. Furthermore, NLRP3-mediated inflammatory responses were found to interact with mitochondrial quality control, exacerbating myocardial injury under stress conditions. Ginsenoside Rb1 modulated the DUSP-1-TMBIM-6-VDAC1 axis, inhibited the release of pro-inflammatory factors, altered the structural composition of the gut flora, and protected impaired heart function. These effects indirectly influenced the crosstalk between inflammation, mitochondria, and gut flora. CONCLUSION: The DUSP-1-TMBIM-6-VDAC1 axis, an upstream pathway regulated by Ginsenoside Rb1, is a profound mechanism through which Ginsenoside Rb1 improves cardiac function in heart failure by modulating inflammation, mitochondria, and gut flora.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Microbioma Gastrointestinal , Ginsenósidos , Insuficiencia Cardíaca , Animales , Ginsenósidos/farmacología , Fosfatasa 1 de Especificidad Dual/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
4.
Cell Signal ; 122: 111305, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067836

RESUMEN

OBJECTIVE: C-C motif chemokine receptor 7 (CCR7) significantly influences tumors onset and progression, yet its impact on the tumor microenvironment (TME) and specific mechanisms remain elusive. Inflammatory Cancer-Associated Fibroblasts (iCAF), a vital subtype of Cancer-Associated Fibroblasts (CAF), play a critical role in regulating the TME and tumor growth, though the underlying molecular mechanisms are not fully understood. This study aims to determine whether CCR7 participates in tumor regulation by iCAF and to elucidate the specific mechanisms involved. METHODS: Differential gene analysis of CAF subtypes in CCR7 knockout and wild-type groups was conducted using single-cell data. Animal models facilitated the extraction of primary iCAF cells via flow cytometry sorting. Changes in DUSP1 expression and the efficiency of lentivirus-mediated knockdown and overexpression were examined through qPCR and Western Blot. MOC1 and MOC2 cells were co-cultured with iCAF, with subsequent validation of changes in tumor cell proliferation, migration, and invasion using CCK8, EdU, and wound healing assays. ELISA was employed to detect changes in TGF-ß1 concentration in the iCAF supernatant. RESULTS: CAF was categorized into three subtypes-myCAF, iCAF, and apCAF-based on single-cell data. Analysis revealed a significant increase in DUSP1 expression in iCAF from the CCR7 knockout group, confirmed by in vitro experiments. Co-culturing MOC1 and MOC2 cells with iCAF exhibiting lentivirus-mediated DUSP1 knockdown resulted in inhibited tumor cell proliferation, invasion, and migration. In contrast, co-culture with iCAF overexpressing DUSP1 enhanced these capabilities. Additionally, the TGF-ß1 concentration in the supernatant increased in the DUSP1 knockdown iCAF group, whereas it decreased in the DUSP1 overexpression group. CONCLUSION: The CCR7/DUSP1 signaling axis regulates tumor growth by modulating TGF-ß1 secretion in iCAF.


Asunto(s)
Proliferación Celular , Fosfatasa 1 de Especificidad Dual , Receptores CCR7 , Transducción de Señal , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Movimiento Celular , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Regulación Neoplásica de la Expresión Génica , Receptores CCR7/metabolismo , Receptores CCR7/genética , Microambiente Tumoral
5.
Front Biosci (Landmark Ed) ; 29(6): 222, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38940057

RESUMEN

BACKGROUND: Persistent hyperuricemia can lead to the generation and deposition of monosodium urate (MSU) crystals. This can trigger gouty arthritis (GA), which in turn induces inflammation. Activation of the Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the onset and progression of GA. Autophagy may have a dual effect on GA with regard to the NLRP3 inflammasome. Therefore, the present study aimed to gain a deeper comprehension of the interaction between autophagy and NLRP3 inflammasome activation is imperative for developing more efficacious treatments for GA. METHODS: Peripheral blood monocytes (PBMCs) were first isolated from GA patients and healthy controls and underwent bulk RNA sequencing analysis. Overexpression and knockdown of dual specificity phosphatase 1 (DUSP1) was performed in THP-1 monocytes to investigate its role in the immune response and mitochondrial damage. The luciferase assay and Western blot analysis were used to study the interaction between autophagy and NLRP3 inflammasome activation. RESULTS: Bulk RNA sequencing analysis showed significant upregulation of DUSP1 expression in PBMCs from GA patients compared to healthy controls. This result was subsequently verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). DUSP1 expression in human THP-1 monocytes was also shown to increase after MSU treatment. Downregulation of DUSP1 expression increased the secretion of inflammatory cytokines after MSU treatment, whereas the overexpression of DUSP1 decreased the secretion levels. Lipopolysaccharides (LPS) combined with adenosine-triphosphate (ATP) led to mitochondrial damage, which was rescued by overexpressing DUSP1. DUSP1 overexpression further increased the level of autophagy following MSU treatment, whereas downregulation of DUSP1 decreased autophagy. Treatment with the autophagy inhibitor 3-Methyladenine (3-MA) restored inflammatory cytokine secretion levels in the DUSP1 overexpression group. MSU caused pronounced pathological ankle swelling in vivo. However, DUSP1 overexpression significantly mitigated this phenotype, accompanied by significant downregulation of inflammatory cytokine secretion levels in the joint tissues. CONCLUSIONS: This study revealed a novel function and mechanism for DUSP1 in promoting autophagy to mitigate the MSU-induced immune response in GA. This finding suggests potential diagnostic biomarkers and anti-inflammatory targets for more effective GA therapy.


Asunto(s)
Artritis Gotosa , Autofagia , Fosfatasa 1 de Especificidad Dual , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Úrico , Humanos , Autofagia/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Artritis Gotosa/genética , Artritis Gotosa/metabolismo , Artritis Gotosa/inmunología , Artritis Gotosa/inducido químicamente , Ácido Úrico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Inflamasomas/inmunología , Células THP-1 , Masculino , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/efectos de los fármacos , Estudios de Casos y Controles , Femenino , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Persona de Mediana Edad
6.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38839029

RESUMEN

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Fosfatasa 1 de Especificidad Dual , Fibroblastos , Inhibidores de Histona Desacetilasas , Pulmón , Fibrosis Pulmonar , Factor de Crecimiento Transformador beta , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/citología , Pulmón/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Línea Celular , Proteína smad3/metabolismo , Fosforilación/efectos de los fármacos , Masculino , Activación Enzimática/efectos de los fármacos , Ratones Endogámicos C57BL
7.
J Mol Neurosci ; 74(3): 59, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890235

RESUMEN

Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fosfatasa 1 de Especificidad Dual , Etanol , Ratones Endogámicos C57BL , Corteza Prefrontal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Masculino , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Etanol/toxicidad , Etanol/farmacología , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Aminoacetonitrilo/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Sistema de Señalización de MAP Quinasas
8.
Mol Pharmacol ; 106(1): 71-82, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38769019

RESUMEN

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Apoptosis , Autofagia , Tratamiento Farmacológico de COVID-19 , Enfermedad Hepática Inducida por Sustancias y Drogas , Dexametasona , Fosfatasa 1 de Especificidad Dual , Hepatocitos , Dexametasona/farmacología , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Antivirales/farmacología , Antivirales/efectos adversos , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
9.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667302

RESUMEN

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Transducción de Señal , Receptores Toll-Like , Ubiquitina-Proteína Ligasas , Ubiquitinación , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Receptores Toll-Like/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Humanos , Ratones , Proteolisis , Inmunidad Innata , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células HEK293 , Citocinas/metabolismo
10.
Aging Cell ; 23(6): e14133, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38459711

RESUMEN

Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.


Asunto(s)
Glucocorticoides , Macrófagos Alveolares , Factor de Necrosis Tumoral alfa , Animales , Ratones , Envejecimiento , Susceptibilidad a Enfermedades , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Glucocorticoides/farmacología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/inmunología , Streptococcus pneumoniae , Factor de Necrosis Tumoral alfa/metabolismo , Femenino
11.
Blood Adv ; 8(11): 2765-2776, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38531054

RESUMEN

ABSTRACT: Elevated MAPK and the JAK-STAT signaling play pivotal roles in the pathogenesis of chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Although inhibitors targeting these pathways effectively suppress the diseases, they fall short in providing enduring remission, largely attributed to the cytostatic nature of these drugs. Even combinations of these drugs are ineffective in achieving sustained remission. Enhanced MAPK signaling besides promoting proliferation and survival triggers a proapoptotic response. Consequently, malignancies reliant on elevated MAPK signaling use MAPK feedback regulators to intricately modulate the signaling output, prioritizing proliferation and survival while dampening the apoptotic stimuli. Herein, we demonstrate that enhanced MAPK signaling in granulocyte colony-stimulating factor 3 receptor (CSF3R)-driven leukemia upregulates the expression of dual specificity phosphatase 1 (DUSP1) to suppress the apoptotic stimuli crucial for leukemogenesis. Consequently, genetic deletion of Dusp1 in mice conferred synthetic lethality to CSF3R-induced leukemia. Mechanistically, DUSP1 depletion in leukemic context causes activation of JNK1/2 that results in induced expression of BIM and P53 while suppressing the expression of BCL2 that selectively triggers apoptotic response in leukemic cells. Pharmacological inhibition of DUSP1 by BCI (a DUSP1 inhibitor) alone lacked antileukemic activity due to ERK1/2 rebound caused by off-target inhibition of DUSP6. Consequently, a combination of BCI with a MEK inhibitor successfully cured CSF3R-induced leukemia in a preclinical mouse model. Our findings underscore the pivotal role of DUSP1 in leukemic transformation driven by enhanced MAPK signaling and advocate for the development of a selective DUSP1 inhibitor for curative treatment outcomes.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Sistema de Señalización de MAP Quinasas , Receptores del Factor Estimulante de Colonias , Animales , Ratones , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Humanos , Receptores del Factor Estimulante de Colonias/genética , Receptores del Factor Estimulante de Colonias/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mutación , Apoptosis , Leucemia/metabolismo , Leucemia/genética , Regulación Leucémica de la Expresión Génica
12.
Cell Cycle ; 23(3): 279-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38445655

RESUMEN

Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.


Asunto(s)
Ciclosporina , Lipopolisacáridos , MicroARNs , Proteínas Quinasas Activadas por Mitógenos , Humanos , Ciclosporina/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Lipopolisacáridos/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Perfilación de la Expresión Génica , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Células HaCaT , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Psoriasis/genética , Psoriasis/tratamiento farmacológico
13.
J Clin Invest ; 134(10)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512415

RESUMEN

Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Pulmón , Proteína Quinasa 14 Activada por Mitógenos , Miofibroblastos , Fibrosis Pulmonar , Animales , Ratones , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Miofibroblastos/patología , Miofibroblastos/metabolismo , Miofibroblastos/enzimología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/inducido químicamente , Pulmón/patología , Pulmón/metabolismo , Bleomicina/toxicidad , Humanos , Ratones Noqueados , Ratones Transgénicos , Apoptosis
14.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366355

RESUMEN

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Mutagénesis , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Puccinia/fisiología , Plantas Modificadas Genéticamente
15.
Int J Med Sci ; 21(3): 547-561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322592

RESUMEN

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Asunto(s)
Síndrome Cardiorrenal , Fosfatasa 1 de Especificidad Dual , Prohibitinas , Animales , Ratones , Síndrome Cardiorrenal/metabolismo , Corazón , Ratones Transgénicos , Miocardio/metabolismo , Prohibitinas/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Mitocondrias
16.
Zhongguo Fei Ai Za Zhi ; 26(12): 881-888, 2024 Jan 02.
Artículo en Chino | MEDLINE | ID: mdl-38163975

RESUMEN

BACKGROUND: Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1). METHODS: The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 µmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 µmol/L DAC), FA+OSM group (600 nmol/L FA+5 µmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 µmol/L OSM+10 µmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group. RESULTS: Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05). CONCLUSIONS: FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/farmacología , Proliferación Celular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Metilación , Apoptosis , Línea Celular Tumoral
17.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139370

RESUMEN

The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.


Asunto(s)
Fosfatasas de Especificidad Dual , Proteínas Quinasas Activadas por Mitógenos , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Mitógenos , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo
18.
Cell Death Dis ; 14(11): 724, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935658

RESUMEN

The mechanism underlying acute kidney injury (AKI) and AKI-to-Chronic kidney disease (CKD) transition remains unclear, but mitochondrial dysfunction may be a key driving factor. Literature reports suggest that dual-specificity phosphatase 1 (DUSP1) plays a critical role in maintaining mitochondrial function and structural integrity. In this study, ischemic Acute Kidney Injury (AKI) and post-ischemic fibrosis models were established by clamping the renal pedicle with different reperfusion times. To investigate the role of DUSP1, constitutional Dusp1 knockout mice and tubular-specific Sting knockout mice were used. Mitochondrial damage was assessed through electron microscopy observation, measurements of mitochondrial membrane potential, mtDNA release, and BAX translocation. We found that Dusp1 expression was significantly upregulated in human transplant kidney tissue and mouse AKI tissue. Dusp1 gene deletion exacerbated acute ischemic injury, post-ischemic renal fibrosis, and tubular mitochondrial dysfunction in mice. Mechanistically, DUSP1 could directly bind to JNK, and DUSP1 deficiency could lead to aberrant phosphorylation of JNK and BAX mitochondria translocation. BAX translocation promoted mitochondrial DNA (mtDNA) leakage and activated the cGAS-STING pathway. Inhibition of JNK or BAX could inhibit mtDNA leakage. Furthermore, STING knockout or JNK inhibition could significantly mitigate the adverse effects of DUSP1 deficiency in ischemic AKI model. Collectively, our findings suggest that DUSP1 is a regulator for the protective response during AKI. DUSP1 protects against AKI by preventing BAX-induced mtDNA leakage and blocking excessive activation of the cGAS-STING signaling axis through JNK dephosphorylation.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Riñón/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Nucleotidiltransferasas/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
19.
Technol Cancer Res Treat ; 22: 15330338231207765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872685

RESUMEN

Objectives: Dual specificity phosphatase 1 (DUSP1) is high-expressed in various cancers and plays an important role in the cellular response to agents that damage DNA. We aimed to investigate the expressions and mechanisms of DUSP1 signaling pathway regulating cytarabine (Ara-C) resistance in acute myeloid leukemia (AML). Methods: Immunohistochemistry was performed on bone marrow biopsy specimens from AML and controls to explore the expression of DUSP1. Western blot and Q-PCR were used to detect the protein and mRNA expression levels. MTT assay was used to detect the proliferation of cells. Cell apoptosis was detected by flow cytometry. The immune protein-protein interaction (PPI) network of DUSP1 was analyzed in the platform of Pathway Commons, and immune infiltration analysis was used to study the immune microenvironment of AML. Results: We found that the expression levels of DUSP1 in AML patients exceeded that in controls. Survival analysis in public datasets showed that AML patients with higher levels of DUSP1 had poor clinical outcomes. Further public data analysis indicated that DUSP1 was overexpressed in NRAS mutated AML. DUSP1 knockdown by siRNA could sensitize AML cells to Ara-C treatments. The phosphorylation level of mitogen-activated protein kinase (MAPK) pathway was significantly elevated in DUSP1 down-regulated NRAS G13D mutated AML cells. The PPI analysis showed DUSP1 correlated with immune gene CREB1 and CXCL8 in NRAS mutated AML. We also revealed a correlation between tumor-infiltrating immune cells in RAS mutated AML microenvironment. Conclusion: Our findings suggest that DUSP1 signaling pathways may regulate Ara-C sensitivity in AML.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacología , Citarabina/uso terapéutico , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/farmacología , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Transducción de Señal , Apoptosis/genética , Microambiente Tumoral
20.
Chin J Physiol ; 66(4): 284-293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635488

RESUMEN

Osteoarthritis (OA) is a form of chronic degenerative disease contributing to elevated disability rate among the elderly. Genkwanin is an active component extracted from Daphne genkwa possessing pharmacologic effects. Here, this study is designed to expound the specific role of genkwanin in OA and elaborate the probable downstream mechanism. First, the viability of chondrocytes in the presence or absence of interleukin-1 beta (IL-1ß) treatment was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess cell apoptosis. Inflammatory response was estimated through enzyme-linked immunosorbent assay and Western blot. In addition, immunofluorescence staining and Western blot were utilized to measure the expression of extracellular matrix (ECM)-associated proteins. Dual-specificity protein phosphatase-1 (DUSP1) expression was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Following DUSP1 elevation in genkwanin-treated chondrocytes exposed to IL-1ß, inflammatory response and ECM-associated factors were evaluated as forementioned. In addition, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining was to assess the mitochondrial membrane potential. Adenosine triphosphate (ATP) level was examined with ATP assay kit, and RT-qPCR was used to test mitochondrial DNA expression. Results indicated that genkwanin administration enhanced the viability while ameliorated the apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced chondrocytes. Besides, genkwanin treatment fortified DUSP1 expression in IL-1ß-exposed chondrocytes. DUSP1 interference further offsets the impacts of genkwanin on the inflammation, ECM degradation, and mitochondrial dysfunction in IL-1ß-challenged chondrocytes. In short, genkwanin enhanced DUSP1 expression to mitigate mitochondrial dysfunction, thus ameliorating IL-1ß-elicited inflammation, apoptosis, and degradation of ECM in chondrocytes.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Anciano , Condrocitos/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Inflamación/tratamiento farmacológico , Matriz Extracelular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Apoptosis , Mitocondrias , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , MicroARNs/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA