Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.778
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713252

RESUMEN

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Asunto(s)
Proteína Quinasa CDC2 , Ciclina B1 , Proteínas de Unión al ADN , Progresión de la Enfermedad , Cinesinas , Ratones Desnudos , Mieloma Múltiple , Fosfatasas cdc25 , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Animales , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Ratones , Femenino , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Masculino , Ciclina B1/metabolismo , Ciclina B1/genética , Proliferación Celular , Línea Celular Tumoral , Persona de Mediana Edad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732131

RESUMEN

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


Asunto(s)
Proteínas 14-3-3 , Simulación de Dinámica Molecular , Unión Proteica , Fosfatasas cdc25 , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/química , Fosfatasas cdc25/antagonistas & inhibidores , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos
3.
Eur J Cancer ; 201: 113950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422585

RESUMEN

BACKGROUND: There is no standard of care for ≥ 3rd-line treatment of metastatic pancreatic adenocarcinoma (PDAC). CBP501 is a novel calmodulin-binding peptide that has been shown to enhance the influx of platinum agents into tumor cells and tumor immunogenicity. This study aimed to (1) confirm efficacy of CBP501/cisplatin/nivolumab for metastatic PDAC observed in a previous phase 1 study, (2) identify combinations that yield 35% 3-month progression-free survival rate (3MPFS) and (3) define the contribution of CBP501 to the effects of combination therapy. METHODS: CBP501 16 or 25 mg/m2 (CBP(16) or CBP(25)) was combined with 60 mg/m2 cisplatin (CDDP) and 240 mg nivolumab (nivo), administered at 3-week intervals. Patients were randomized 1:1:1:1 to (1) CBP(25)/CDDP/nivo, (2) CBP(16)/CDDP/nivo, (3) CBP(25)/CDDP and (4) CDDP/nivo, with randomization stratified by ECOG PS and liver metastases. A Fleming two-stage design was used, yielding a one-sided type I error rate of 2.5% and 80% power when the true 3MPFS is 35%. RESULTS: Among 36 patients, 3MPFS was 44.4% in arms 1 and 2, 11.1% in arm 3% and 33.3% in arm 4. Two patients achieved a partial response in arm 1 (ORR 22.2%; none in other arms). Median PFS and OS were 2.4, 2.1, 1.5 and 1.5 months and 6.3, 5.3, 3.7 and 4.9 months, respectively. Overall, all treatment combinations were well tolerated. Most treatment-related adverse events were grade 1-2. CONCLUSIONS: The combination CBP(25)/(16)/CDDP/nivo demonstrated promising signs of efficacy and a manageable safety profile for the treatment of advanced PDAC. CLINICAL TRIAL REGISTRATION: NCT04953962.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Fragmentos de Péptidos , Fosfatasas cdc25 , Humanos , Cisplatino , Adenocarcinoma/patología , Nivolumab/efectos adversos , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
4.
Environ Toxicol ; 39(5): 3225-3237, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38357781

RESUMEN

Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Movimiento Celular/genética , Pulmón/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/uso terapéutico , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
5.
Mol Biol Rep ; 51(1): 90, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194158

RESUMEN

BACKGROUND: CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS: This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS: Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION: This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Mitoxantrona/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Daño del ADN , Mitosis , Luciferasas , Factor de Transcripción E2F3 , Fosfatasas cdc25/genética
6.
Bioorg Chem ; 142: 106952, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952486

RESUMEN

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Proteómica , Proliferación Celular , Puntos de Control del Ciclo Celular , Nitrógeno , Línea Celular Tumoral , Fosfatasas cdc25 , Poli(ADP-Ribosa) Polimerasa-1 , Proteína Quinasa CDC2
7.
Cell Rep ; 42(9): 113041, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37682709

RESUMEN

Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Empalme Alternativo/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular/genética , División Celular , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
8.
Eur J Med Chem ; 258: 115505, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37302341

RESUMEN

Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 µM (DLD1) and 0.44 µM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.


Asunto(s)
Neoplasias Colorrectales , Fosfatasas cdc25 , Humanos , División Celular , Ciclo Celular , Inestabilidad Genómica , Neoplasias Colorrectales/tratamiento farmacológico
9.
Technol Cancer Res Treat ; 22: 15330338231184327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37386808

RESUMEN

OBJECTIVE: LncRNA PART1 has been confirmed related to multiple cancer bioactivities mediated with vascular endothelial growth factor signaling. Nevertheless, the role of LncRNA PART1 in esophageal cancer induced angiogenesis remains unclear. The present work focused on assessing LncRNA PART1 effects on esophageal cancer-induced angiogenesis and exploring possible mechanisms. METHODS: Western blot and immunofluorescence were conducted for identifying EC9706 exosomes. MiR-302a-3p and LncRNA PART1 levels were assessed by real-time quantitative polymerase chain reaction. Cell Counting Kit-8, EdU, wound healing, transwell, and tubule information were adopted for detecting human umbilical vein endothelial cell viability, proliferation, migration, invasion, and tubule information, respectively. Starbase software and dual-luciferase reporter were conducted for predicting and judging the expression interrelation of LncRNA PART1 and its potential target-miR-302a-3p. The same methods were carried out for verifying the inhibiting influences of miR-302a-3p upregulation and its potential target-cell division cycle 25 A. RESULTS: LncRNA PART1 levels were upregulated and related to the overall survival of patients in esophageal cancer. EC9706-Exos accelerated human umbilical vein endothelial cell proliferation, migration, invasion, and tubule formation via LncRNA PART1. LncRNA PART1 served as a sponge of miR-302a-3p, then miR-302a-3p targeted cell division cycle 25 A, and EC9706-Exos accelerated human umbilical vein endothelial cell angiogenesis via LncRNA PART1/ miR-302a-3p/cell division cycle 25 A axis. CONCLUSION: EC9706-Exos accelerates human umbilical vein endothelial cell angiogenesis via LncRNA PART1/miR-302a-3p/ cell division cycle 25 A axis, indicating EC9706-Exos may act as a promoter of angiogenesis. Our research will contribute to clarify the mechanism of tumor angiogenesis.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Factor A de Crecimiento Endotelial Vascular , Neoplasias Esofágicas/genética , Western Blotting , MicroARNs/genética , Fosfatasas cdc25
10.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37149988

RESUMEN

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Ratones , Ciclo Celular/genética , División Celular , Proliferación Celular , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Miocitos Cardíacos/metabolismo , Pez Cebra/metabolismo , Fosfatasas cdc25/metabolismo , Proteína Quinasa CDC2/metabolismo
11.
Sci Rep ; 13(1): 7737, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173384

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with poor prognosis, necessitating identification of oncogenic mechanisms for novel therapeutic strategies. Recent studies have highlighted the significance of the transcription factor forkhead box K1 (FOXK1) in diverse biological processes and carcinogenesis of multiple malignancies, including ESCC. However, the molecular pathways underlying FOXK1's role in ESCC progression are not fully understood, and its potential role in radiosensitivity remains unclear. Here, we aimed to elucidate the function of FOXK1 in ESCC and explore the underlying mechanisms. Elevated FOXK1 expression levels were found in ESCC cells and tissues, positively correlated with TNM stage, invasion depth, and lymph node metastasis. FOXK1 markedly enhanced the proliferative, migratory and invasive capacities of ESCC cells. Furthermore, silencing FOXK1 resulted in heightened radiosensitivity by impeding DNA damage repair, inducing G1 arrest, and promoting apoptosis. Subsequent studies demonstrated that FOXK1 directly bound to the promoter regions of CDC25A and CDK4, thereby activating their transcription in ESCC cells. Moreover, the biological effects mediated by FOXK1 overexpression could be reversed by knockdown of either CDC25A or CDK4. Collectively, FOXK1, along with its downstream target genes CDC25A and CDK4, may serve as a promising set of therapeutic and radiosensitizing targets for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Factores de Transcripción Forkhead , Humanos , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Pronóstico , Tolerancia a Radiación/genética , Activación Transcripcional
12.
Mol Med Rep ; 27(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052240

RESUMEN

Nasopharyngeal carcinoma (NPC) is a primary malignancy that originates from the nasopharyngeal region. It has been demonstrated that a decrease in the expression level of cell division cycle gene 25A (CDC25A) suppresses cell viability and induces apoptosis in a variety of different types of cancer. However, at present, the role of CDC25A in NPC has yet to be fully elucidated. Therefore, the aim of the present study was to investigate the role of CDC25A in NPC progression and to explore the potential underlying mechanism. Reverse transcription­quantitative PCR was performed to detect the relative mRNA levels of CDC25A and E2F transcription factor 1 (E2F1). Western blot analysis was subsequently used to determine the expression levels of CDC25A, Ki67, proliferating cell nuclear antigen (PCNA) and E2F1. CCK8 assay was employed to measure cell viability and flow cytometric analysis was employed to analyze the cell cycle. The binding sites between the CDC25A promoter and E2F1 were predicted using bioinformatics tools. Finally, luciferase reporter gene and chromatin immunoprecipitation assays were performed to verify the interaction between CDC25A and E2F1. The results obtained suggested that CDC25A is highly expressed in NPC cell lines and CDC25A silencing was found to inhibit cell proliferation, reduce the protein expression levels of Ki67 and PCNA and induce G1 arrest of NPC cells. Furthermore, E2F1 could bind CDC25A and positively regulate its expression at the transcriptional level. In addition, CDC25A silencing abolished the effects of E2F1 overexpression on cell proliferation and the cell cycle in NPC. Taken together, the findings of the present study showed that CDC25A silencing attenuated cell proliferation and induced cell cycle arrest in NPC and CDC25A was regulated by E2F1. Hence, CDC25A may be a promising therapeutic target for treatment of NPC.


Asunto(s)
Genes cdc , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Ki-67/metabolismo , Línea Celular Tumoral , Proliferación Celular , Puntos de Control del Ciclo Celular/genética , Ciclo Celular , Neoplasias Nasofaríngeas/patología , Regulación Neoplásica de la Expresión Génica , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
13.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929198

RESUMEN

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , FN-kappa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
14.
ACS Chem Neurosci ; 14(7): 1226-1237, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36942687

RESUMEN

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases that are presently incurable. There have been reports of aberrant activation of cell cycle pathways in neurodegenerative diseases. Previously, we have found that Cdc25A is activated in models of neurodegenerative diseases, including AD and PD. In the present study, we have synthesized a small library of molecules targeting Cdc25A and tested their neuroprotective potential in cellular models of neurodegeneration. The Buchwald reaction and amide coupling were crucial steps in synthesizing the Cdc25A-targeting molecules. Several of these small-molecule inhibitors significantly prevented neuronal cell death induced by nerve growth factor (NGF) deprivation as well as 6-hydroxydopamine (6-OHDA) treatment. Lack of NGF signaling leads to neuron death during development and has been associated with AD pathogenesis. The NGF receptor TrkA has been reported to be downregulated at the early stages of AD, and its reduction is linked to cognitive failure. 6-OHDA, a PD mimic, is a highly oxidizable dopamine analogue that can be taken up by the dopamine transporters in catecholaminergic neurons and can induce cell death by reactive oxygen species (ROS) generation. Some of our newly synthesized molecules inhibit Cdc25A phosphatase activity, block loss of mitochondrial activity, and inhibit caspase-3 activation caused by NGF deprivation and 6-OHDA. Hence, it may be proposed that Cdc25A inhibition could be a therapeutic possibility for neurodegenerative diseases and these Cdc25A inhibitors could be effective treatments for AD and PD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , Factor de Crecimiento Nervioso/metabolismo , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/farmacología , Dopamina/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675024

RESUMEN

Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.


Asunto(s)
Proteínas de Ciclo Celular , Células-Madre Neurales , Neurogénesis , Fosfatasas cdc25 , Animales , Ratas , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo/genética , Neurogénesis/genética , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo
16.
Dis Model Mech ; 16(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601903

RESUMEN

Tau pathology is defined by the intracellular accumulation of abnormally phosphorylated Tau (MAPT) and is prevalent in several neurodegenerative disorders. The identification of modulators of Tau abnormal phosphorylation and aggregation is key to understanding disease progression and developing targeted therapeutic approaches. In this study, we identified String (Stg)/Cdc25 phosphatase as a suppressor of abnormal Tau phosphorylation and associated toxicity. Using a Drosophila model of tauopathy, we showed that Tau dephosphorylation by Stg/Cdc25 correlates with reduced Tau oligomerization, brain vacuolization and locomotor deficits in flies. Moreover, using a disease mimetic model, we provided evidence that Stg/Cdc25 reduces Tau phosphorylation levels independently of Tau aggregation status and delays neurodegeneration progression in the fly. These findings uncover a role for Stg/Cdc25 phosphatases as regulators of Tau biology that extends beyond their well-characterized function as cell-cycle regulators during cell proliferation, and indicate Stg/Cdc25-based approaches as promising entry points to target abnormal Tau phosphorylation.


Asunto(s)
Proteínas de Drosophila , Tauopatías , Animales , Fosfatasas cdc25 , Proteínas tau/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Fosforilación
17.
J Neurosci ; 43(7): 1154-1165, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596698

RESUMEN

During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
18.
J Biol Chem ; 299(3): 102957, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717077

RESUMEN

Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.


Asunto(s)
Ciclina A , Quinasas Ciclina-Dependientes , Fosfatasas cdc25 , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular , División Celular , Ciclina A/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación
19.
Appl Biochem Biotechnol ; 195(3): 1644-1655, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36355336

RESUMEN

Cisplatin broadly functions as a routine treatment for lung adenocarcinoma (LUAD) patients. However, primary and acquired cisplatin resistances frequently occur in the treatment of LUAD patients, seriously affecting the therapeutic effect of cisplatin in patients. We intended to illustrate the impact of let-7c-5p/cell division cycle 25A (CDC25A) axis on cisplatin resistance in LUAD. Expression of let-7c-5p and CDC25A was analyzed via quantitative real-time polymerase chain reaction. The interaction between the two was verified by dual-luciferase reporter detection. For detecting half-maximal inhibitory concentration value of cisplatin in LUAD cells and cell proliferation, we separately applied Cell Counting Kit-8 and colony formation assays. Furthermore, we measured cell apoptosis and cell cycle distribution via flow cytometry, as well as cell cycle-related protein expression via Western blot. Let-7c-5p was evidently downregulated in LUAD, while CDC25A was remarkably upregulated. Let-7c-5p upregulation arrested LUAD cells to proliferate, stimulated cell apoptosis, and arrested cell cycle in G0/G1 phase, thus enhancing sensitivity of LUAD cells to cisplatin. In terms of mechanism, CDC25A was directly targeted by let-7c-5p, and the influence of let-7c-5p overexpression on LUAD proliferation, apoptosis, cell cycle, and cisplatin resistance could be reversed by CDC25A upregulation. Let-7c-5p improved sensitivity of LUAD cells to cisplatin by modulating CDC25A, and let-7c-5p/CDC25A axis was an underlying target for the intervention of LUAD cisplatin resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Cisplatino/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/farmacología
20.
Cell Biol Toxicol ; 39(5): 1-18, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35567596

RESUMEN

Circular RNAs (circRNAs) have been extensively studied in tumor development and treatment. CircZNF609 (hsa_circ_0000615) has been shown to serve as an oncogene in all kinds of solid tumors and may act as the novel biomarker in tumor diagnosis and therapy in tumor early diagnosis and therapy. However, the underlying character and mechanism of circZNF609 in cisplatin chemosensitivity and bladder cancer (BCa) development were unknown. The expression level of cell division cycle 25B (CDC25B), microRNA 1200 (miR-1200), and circZNF609 in BCa cells and tissues depended on quantitative real-time PCR (qRT-PCR). CDC25B protein level was assayed with Western blot. Functional assays in vitro and in vivo had been conducted to inspect the important role of circZNF609 on BCa progression and cisplatin chemosensitivity in BCa. RNA sequencing and online databases were used to predict the interactions among circZNF609, miR-1200, and CDC25B. Mechanistic exploration was confirmed by RNA pull-down assay, RNA fluorescence in situ hybridization (FISH) and Dual luciferase reporter assay. CircZNF609 expression was increased significantly in BCa cell lines and tissues. For BCa patients, increased expression of circZNF609 was correlated with a worse survival. In vitro and in vivo, enforced expression of circZNF609 enhanced BCa cells proliferation, migration, and cisplatin chemoresistance. Mechanistically, circZNF609 alleviated the inhibition effect on target CDC25B expression by sponging miR-1200. CircZNF609 promoted tumor growth through novel circZNF609/miR-1200/CDC25B axis, implying that circZNF609 has significant potential to act as a new diagnostic biomarker and therapeutic target in BCa. Enhancing cisplatin sensitivity is an important direction for bladder cancer management. 1. This research reveals that circZNF609 improves bladder cancer progression and inhibits cisplatin sensitivity by inducing G1/S cell cycle arrest via a novel miR-1200/CDC25B cascades. 2. CircZNF609 was confirmed associated with worse survival of bladder cancer patients. 3. CircZNF609 act as a prognostic biomarker for bladder cancer treatment.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Hibridación Fluorescente in Situ , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA