Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.663
Filtrar
1.
J Colloid Interface Sci ; 669: 537-551, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729002

RESUMEN

Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.


Asunto(s)
Antibacterianos , Biopelículas , Ácidos Docosahexaenoicos , Pruebas de Sensibilidad Microbiana , Nanopartículas , Fosfatidilgliceroles , Staphylococcus aureus , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Fosfatidilgliceroles/química , Fosfatidilgliceroles/farmacología , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Cristales Líquidos/química , Tamaño de la Partícula
2.
Biochim Biophys Acta Biomembr ; 1866(6): 184338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763269

RESUMEN

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.


Asunto(s)
Proteínas Bacterianas , Membrana Dobles de Lípidos , Fosfatidilgliceroles , Canales de Potasio , Membrana Dobles de Lípidos/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Fosfatidilgliceroles/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfatidiletanolaminas/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membrana Celular/química , Termodinámica , Liposomas/química , Fosfatidilcolinas/química
3.
J Phys Chem B ; 128(22): 5407-5418, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38795045

RESUMEN

In this work, we explored how the amount of cholesterol in the lipid membrane composed of phosphatidylcholine (POPC) or phosphatidylglycerol (POPG) affects the interaction with 1-dodecyl-3-methylimidazolium bromide ([C12MIM]+Br-) ionic liquids using various biophysical techniques. On interacting with the membrane, [C12MIM]+Br- leads to enhanced membrane permeability and induces membrane fusion, leading to an increase in vesicle size. The 2H-based solid-state NMR investigations of cholesterol-containing lipid membranes reveal that [C12MIM]+Br- decreases the lipid chain order parameters and counteracts the lipid condensation effect of cholesterol to some extent. Therefore, as the amount of cholesterol in the membrane increases, the membrane effect of [C12MIM]+Br- decreases. The effect of [C12MIM]+Br- on the membrane properties is more pronounced for POPC compared to that of POPG membranes. This suggests a dependence of these effects on the electrostatic interactions, indicating that the influence of [C12MIM]+Br- varies based on the lipid composition. The findings suggest that the presence of cholesterol can modulate the effect of [C12MIM]+Br- on membrane properties, with variations observed between POPC and POPG membranes, highlighting the importance of lipid composition. In short, this study provides insights into the intricate interplay between cholesterol, the lipid membrane, and the ionic liquid [C12MIM]+Br-.


Asunto(s)
Colesterol , Imidazoles , Líquidos Iónicos , Fosfatidilcolinas , Fosfatidilgliceroles , Líquidos Iónicos/química , Colesterol/química , Colesterol/metabolismo , Fosfatidilgliceroles/química , Fosfatidilcolinas/química , Imidazoles/química , Permeabilidad , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
4.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690887

RESUMEN

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Asunto(s)
Antibacterianos , Daptomicina , Simulación de Dinámica Molecular , Fosfolípidos , Daptomicina/farmacología , Daptomicina/química , Antibacterianos/farmacología , Antibacterianos/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fosfatidilgliceroles/química , Interacciones Hidrofóbicas e Hidrofílicas , Cardiolipinas/química , Cardiolipinas/metabolismo
5.
J Phys Chem Lett ; 15(16): 4408-4415, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38625684

RESUMEN

Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Fluidez de la Membrana , Fosfatidilgliceroles , Humanos , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Interacciones Hidrofóbicas e Hidrofílicas , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Electricidad Estática
6.
Biochim Biophys Acta Biomembr ; 1866(3): 184267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159877

RESUMEN

NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Membrana Dobles de Lípidos , Fosfatidiletanolaminas , Proteolípidos , Humanos , Membrana Dobles de Lípidos/química , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Péptidos/química
7.
J Phys Chem B ; 127(42): 9095-9101, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37843472

RESUMEN

PAP248-286 is a fusogenic peptide derived from prostatic acid phosphatase, commonly found in human semen, and is known to mediate HIV fusion with cell membranes. In this study, we performed 120 independent coarse-grained molecular dynamics simulations to investigate the spontaneous binding of PAP248-286 monomers, considering both charged and neutral histidine (His) residues, to membrane bilayers composed of different lipid compositions: 100% POPC, 70% POPC-30% POPG, and 50% POPC-50% POPG. Our simulations revealed that PAP248-286 displayed spontaneous binding to the membrane, with increased binding observed in the presence of anionic lipid POPG. Specifically, in systems containing 30% and 50% POPG lipids, monomer residues, particularly in the systems containing charged histidine (His) residues, exhibited prolonged binding with the membrane. Furthermore, our simulations indicated that PAP248-286 adopted a parallel orientation with the membrane, exposing its positively charged residues to the lipid bilayer. Interestingly, systems containing charged His residues showed a higher lipid occupancy around the peptide. These findings are consistent with previous experimental data, suggesting that PAP248-286 binding is enhanced in membranes with charged His residues, resembling the conditions found in the acidic vaginal pH environment. The results of our study provide further insights into the molecular mechanisms underlying the membrane binding of PAP248-286, contributing to our understanding of its potential role in HIV fusion and infection.


Asunto(s)
Infecciones por VIH , Membrana Dobles de Lípidos , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Histidina , Péptidos/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química
8.
Biochim Biophys Acta Biomembr ; 1865(7): 184194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37328023

RESUMEN

The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.


Asunto(s)
Daptomicina , Daptomicina/farmacología , Daptomicina/metabolismo , Biomimética , Membrana Celular/metabolismo , Fosfatidilgliceroles/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/metabolismo
9.
J Phys Chem B ; 127(9): 2002-2010, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36827970

RESUMEN

The cell-penetrating peptide NAF-1 has recently emerged as a promising candidate for selective penetration and destruction of cancer cells. It displays numerous membrane-selective behaviors including cell-specific uptake and organelle-specific degradation. In this work, we explore membrane penetration and translocation of NAF-1 in model lipid bilayer vesicles as a function of lipid identity in zwitterionic phosphatidylcholine lipids mixed with anionic phosphatidylserine, phosphatidylglycerol, and phosphatidic acid lipids. By monitoring the digestion of NAF-1 using the protease trypsin located inside but not outside the vesicles, we determined that the translocation of NAF-1 was significantly enhanced by the presence of phosphatidic acid in the membrane compared to the other three anionic or zwitterionic lipids. These findings were correlated to fluorescence measurements of dansyl-labeled NAF-1, which revealed whether noncovalent interactions between NAF-1 and the bilayer were most stable either at the membrane/solution interface or within the membrane interior. Phosphatidic acid promoted interactions with fatty acid tails, while phosphatidylcholine, phosphatidylserine, and phosphatidylglycerol stabilized interactions with polar lipid headgroups. Interfacial vibrational sum frequency spectroscopy experiments revealed that the phosphate moiety on phosphatidic acid headgroups was better hydrated than on the other three lipids, which helped to shuttle NAF-1 into the hydrophobic region. Our findings demonstrate that permeation does not depend on the net charge on phospholipid lipid headgroups in these model vesicles and suggest a model wherein NAF-1 crosses membranes selectively due to lipid-specific interactions at bilayer surfaces.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/metabolismo , Fosfatidilserinas , Fosfatidilcolinas/química , Membrana Dobles de Lípidos/química , Proteínas Portadoras , Fosfatidilgliceroles/química
10.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615630

RESUMEN

Catechins have been shown to display a great variety of biological activities, prominent among them are their chemo preventive and chemotherapeutic properties against several types of cancer. The amphiphilic nature of catechins points to the membrane as a potential target for their actions. 3,4,5-Trimethoxybenzoate of catechin (TMBC) is a modified structural analog of catechin that shows significant antiproliferative activity against melanoma and breast cancer cells. Phosphatidylglycerol is an anionic membrane phospholipid with important physical and biochemical characteristics that make it biologically relevant. In addition, phosphatidylglycerol is a preeminent component of bacterial membranes. Using biomimetic membranes, we examined the effects of TMBC on the structural and dynamic properties of phosphatidylglycerol bilayers by means of biophysical techniques such as differential scanning calorimetry, X-ray diffraction and infrared spectroscopy, together with an analysis through molecular dynamics simulation. We found that TMBC perturbs the thermotropic gel to liquid-crystalline phase transition and promotes immiscibility in both phospholipid phases. The modified catechin decreases the thickness of the bilayer and is able to form hydrogen bonds with the carbonyl groups of the phospholipid. Experimental data support the simulated data that locate TMBC as mostly forming clusters in the middle region of each monolayer approaching the carbonyl moiety of the phospholipid. The presence of TMBC modifies the structural and dynamic properties of the phosphatidylglycerol bilayer. The decrease in membrane thickness and the change of the hydrogen bonding pattern in the interfacial region of the bilayer elicited by the catechin might contribute to the alteration of the events taking place in the membrane and might help to understand the mechanism of action of the diverse effects displayed by catechins.


Asunto(s)
Catequina , Fosfatidilgliceroles , Fosfatidilgliceroles/química , Membrana Dobles de Lípidos/química , Catequina/química , Fosfolípidos , Transición de Fase , Rastreo Diferencial de Calorimetría
11.
Arch Biochem Biophys ; 733: 109481, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522815

RESUMEN

Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Fluidez de la Membrana , 1,2-Dipalmitoilfosfatidilcolina/química , Espectroscopía Infrarroja por Transformada de Fourier , Análisis de Fourier , Fosfatidilgliceroles/química , Rastreo Diferencial de Calorimetría , Membrana Dobles de Lípidos/química
12.
Biophys J ; 122(6): 950-963, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35927958

RESUMEN

Cyclic lipopeptides (CLiPs) have many biological functions, including the selective permeabilization of target membranes, and technical and medical applications. We studied the anionic CLiP viscosin from Pseudomonas along with a neutral analog, pseudodesmin A, and the cationic viscosin-E2K to better understand electrostatic effects on target selectivity. Calcein leakage from liposomes of anionic phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) is measured in comparison with net-neutral phosphatidylcholine by time-resolved fluorescence. By contrast to the typical selectivity of cationic peptides against anionic membranes, we find viscosin more active against PG/PE at 30 µM lipid than viscosin-E2K. At very low lipid concentration, the selectivity is reversed. An equi-activity analysis reveals the reciprocal partition coefficients, 1/K, and the CLiP-to-lipid mole ratio within the membrane as leakage after 1 h reaches 50%, Re50. As expected, 1/K to PG/PE is much lower (higher affinity) for viscosin-E2K (3 µM) than viscosin (15 µM). However, the local damage to the PG/PE membrane caused by a viscosin molecule is much stronger than that of viscosin-E2K. This can be explained by the strong membrane expansion due to PG/viscosin repulsion inducing asymmetry stress between the two leaflets and, ultimately, transient limited leakage at Re50 = 0.08. PG/viscosin-E2K attraction opposes expansion and leakage starts only as the PG charges in the outer leaflet are essentially compensated by the cationic peptide (Re50 = 0.32). In the high-lipid regime (at lipid concentrations cL ≫ 1/K), virtually all CLiP is membrane bound anyway and Re50 governs selectivity, favoring viscosin. In the low-lipid regime at cL ≪ 1/K, virtually all CLiP is in solution, 1/K becomes important and the "cation attacks anionic membrane" selectivity gets restored. Overall, activity and selectivity data can only properly be interpreted if the lipid regime is known and predictions for other lipid concentrations or cell counts require knowledge of 1/K and Re50.


Asunto(s)
Permeabilidad de la Membrana Celular , Péptidos Cíclicos , Electricidad Estática , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Liposomas , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Fosfatidiletanolaminas
13.
Soft Matter ; 19(1): 57-68, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36458871

RESUMEN

The anionic dimyristoyl phosphatidylglycerol (DMPG) membrane in solvents with a low ionic strength is known to exhibit an unusually wide melting regime between the gel and fluid phase characterized by various anomalous macroscopic characteristics, such as low turbidity and high electrical conductivity and viscosity. A recent neutron spin echo study [Kelley, E. G. et al., Struct. Dyn., 7 (2020) 054704] revealed that during the extended melting phase transition the DMPG membrane becomes softer and exhibits faster collective bending fluctuation compared to the higher temperature fluid phase. In contrast, in the present work, using incoherent quasielastic neutron scattering through the anomalous phase transition regime we find that single-particle lateral and internal lipid motions in the DMPG membrane show regular temperature dependence, with no enhanced dynamics evident in the anomalous melting regime. Further, we find that incorporation of NaCl in DMPG suppresses the anomalous extended melting regime, concurrently enhancing the single-particle lipid dynamics, both the lateral diffusivity and (to a lesser extent) the internal lipid motion. This seems rather counterintuitive and in variance with the dynamic suppression effect exerted by a salt on a zwitterionic membrane. However, since incorporation of a salt in anionic DMPG leads to enhanced cooperativity, the disrupted cooperativity in the salt-free DMPG is associated with the baseline lipid dynamics that is suppressed to begin with, whereas addition of salt partially restores the cooperativity, thus enhancing lipid dynamics compared to the salt-free baseline DMPG membrane state. These results provide new insights into the ion-membrane interaction and divulge a correlation between microscopic dynamics and the structure of the lipid bilayer.


Asunto(s)
Fosfatidilgliceroles , Cloruro de Sodio , Temperatura , Fosfatidilgliceroles/química , Membrana Dobles de Lípidos/química
14.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362195

RESUMEN

LL-37 is a membrane-active antimicrobial peptide (AMP) that could disrupt the integrity of bacterial membranes due to its inherent cationic and amphipathic nature. Developing a shorter derivative of a long peptide such as LL-37 is of great interest, as it can reduce production costs and cytotoxicity. However, more detailed information about the residual interaction between LL-37 and the membrane is required for further optimization. Previously, molecular dynamics simulation using mixed all-atom and united-atom force fields showed that LL-37 could penetrate the bilayer membrane. This study aimed to perform all-atom molecular dynamics simulations, highlighting the residual interaction of LL-37 with the simplest model of the bacterial membrane, POPE:POPG (2:1), and compare its interaction with the POPC, which represents the eukaryotic membrane. The result showed leucine-leucine as the leading residues of LL-37 that first contact the membrane surface. Then, the cationic peptide of LL-37 started to penetrate the membrane by developing salt bridges between positively charged amino acids, Lys-Arg, and the exposed phosphate group of POPE:POPG, which is shielded in POPC. Residues 18 to 29 are suggested as the core region of LL-37, as they actively interact with the POPE:POPG membrane, not POPC. These results could provide a basis for modifying the amino acid sequence of LL-37 and developing a more efficient design for LL-37 derivatives.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatidilgliceroles , Fosfatidilgliceroles/química , Membrana Dobles de Lípidos/química , Péptidos Catiónicos Antimicrobianos/química , Leucina , Fosfatidilcolinas/química
15.
Colloids Surf B Biointerfaces ; 219: 112782, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063719

RESUMEN

Chitosan is a versatile and biocompatible cationic antimicrobial polymer obtained from sustainable sources that is effective against a wide range of microorganisms. Although it is soluble only at low pH, chitosan oligomers (ChitO) are soluble in pure water and thus more appropriate for antibacterial applications. Although there is a vast literature on chitosan's antimicrobial activity, the molecular details of its interaction with biomembranes remain unclear. Here we investigate these molecular interactions by resorting to phospholipid Langmuir films (zwitterionic DPPC and anionic DPPG) as simplified membrane models (for mammalian and bacterial membranes, respectively), and using SFG vibrational spectroscopy to probe lipid tail conformation, headgroup dynamics and interfacial water orientation. For comparison, we also investigate the interactions of another simple cationic antimicrobial polyelectrolyte, poly(allylamine) hydrochloride - PAH. By forming the lipid films over the polyelectrolyte solutions, we found that both have only a very small interaction with DPPC, but PAH adsorption is able to invert the interfacial water orientation (membrane potential). This might explain why ChitO is compatible with mammalian cells, while PAH is toxic. In contrast, their interaction with DPPG films is much stronger, even more so for ChitO, with both insertion within the lipid film and interaction with the oppositely charged headgroups. Again, PAH adsorption inverts the membrane potential, while ChitO does not. Finally, ChitO interaction with DPPG is weaker if the antimicrobial is injected underneath a pre-assembled Langmuir film, and its interaction mode depends on the time interval between end of film compression and ChitO injection. These differences between ChitO and PAH effects on the model membranes highlight the importance of molecular structure and intermolecular interactions for their bioactivity, and therefore this study may provide insights for the rational design of more effective antimicrobial molecules.


Asunto(s)
Quitosano , Quitosano/química , Membranas Artificiales , Agua , Polielectrolitos , Membrana Celular , Fosfolípidos/química , Análisis Espectral , Antibacterianos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Fosfatidilgliceroles/química
16.
ACS Infect Dis ; 8(9): 1935-1947, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001599

RESUMEN

A54145 factor D (A5D) is a cyclic lipopeptide antibiotic that shares several structural and mechanistic features with the clinically important antibiotic daptomycin, such as their requirement for calcium and phosphatidylglycerol (PG) for activity. Studies by others have suggested that daptomycin's activity is strongly inhibited by lung surfactant while A5D's activity is not. This finding has inspired efforts, albeit unsuccessful, to develop an A5D analogue that is highly active in the presence of lung surfactant and can be used for treating community acquired pneumonia (CAP). Here we demonstrate that A5D, like daptomycin, has a strong preference for the 1,2-diacyl-sn-glycero-3-phospho-1'-sn-glycerol stereoisomer (2R,2'S configuration) of PG. This PG stereoisomer was determined to be the only stereoisomer of PG in lung surfactant. Both antibiotics are completely antagonized by approximately 1-2 mol equiv of 2R,2'S-PG. Studies performed in the presence of lung surfactant revealed that the antagonism of these peptides by surfactant is mainly due to their interaction with PG and that A5D is not significantly less susceptible to inhibition by lung surfactant than daptomycin.


Asunto(s)
Daptomicina , Antibacterianos/química , Antibacterianos/farmacología , Factor D del Complemento , Daptomicina/química , Daptomicina/farmacología , Lipoproteínas , Pulmón , Pruebas de Sensibilidad Microbiana , Fosfatidilgliceroles/química , Tensoactivos/farmacología
17.
ACS Infect Dis ; 8(8): 1674-1686, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35793519

RESUMEN

Daptomycin is a clinical antibiotic used to treat serious infections caused by Gram-positive bacteria. Although there is debate about the action mechanism of daptomycin, it is known that daptomycin requires both calcium and phosphatidylglycerol (PG) to exert its antibacterial effect. Despite the importance and uniqueness of the interaction of daptomycin with PG, very little is known about this interaction or the nascent daptomycin-PG complex. In this work, we establish a structure-activity relationship between daptomycin and PG through the synthesis of PG analogues. In total, nine PGs were synthesized using a divergent approach employing phosphoramidite chemistry. The interaction between daptomycin and these PGs was studied using fluorescence, circular dichroism, and isothermal titration calorimetry. It was determined that daptomycin is highly sensitive to the modification of the headgroup of PG and both hydroxyl groups influence membrane binding, oligomerization, and backbone structure. Methylation of each hydroxyl in the headgroup suggests that the binding pocket envelops both hydroxyl groups. A PG acyl tail chain length of at least 7-8 carbons is required for stoichiometric binding at micromolar peptide concentrations. Daptomycin binds to PG having 8-carbon, linear, unsaturated acyl groups (C8PGs) at the micromolar concentration and interacts with C8PG in essentially the same manner as when the PG is incorporated into a liposome, and thus, preassembly of individual PG moieties is not a prerequisite for binding, structural transition, and oligomerization.


Asunto(s)
Daptomicina , Antibacterianos/química , Antibacterianos/farmacología , Daptomicina/química , Daptomicina/farmacología , Bacterias Grampositivas , Fosfatidilgliceroles/química , Relación Estructura-Actividad
18.
Soft Matter ; 18(22): 4305-4314, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35620962

RESUMEN

A clear physical picture of the dynamic behavior of molecules on the surface of the lipid membrane is highly desired and has attracted great attention from researchers. In this study, a step forward in this direction based on previous studies was presented with second harmonic generation (SHG) and molecular dynamic (MD) simulation. Specifically, details on the orientation flipping and cross-membrane transport of two charged molecules, 4-(4-diethylaminostyry)-1-methyl-pyridinium iodide (D289) and malachite green (MG), on the surface of 2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) lipids were presented. Firstly, the orientation flipping of the two molecules on the surface of lipids before their cross-membrane transport was confirmed by the MD simulation. Then, the concentration dependent rate of the cross membrane transport for MG/D289 was analyzed. It was found that a simplified model could satisfactorily interpret the faster cross-membrane transport of MG under higher bulk concentrations. A different concentration dependent dynamics was observed with D289 and the reason behind it was also discussed. With this investigation, the surface structures and dynamics of D289 and MG on the DOPG lipid surface were clearly presented.


Asunto(s)
Simulación de Dinámica Molecular , Microscopía de Generación del Segundo Armónico , Cinética , Membrana Dobles de Lípidos/química , Fosfatidilgliceroles/química
19.
Anal Chem ; 94(23): 8497-8505, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35621361

RESUMEN

The structure and function of membrane proteins can be significantly impacted by the surrounding lipid environment, but membrane protein-lipid interactions in lipid bilayers are often difficult to study due to their transient and polydisperse nature. Here, we used two native mass spectrometry (MS) approaches to investigate how the Escherichia coli ammonium transporter trimer (AmtB) and aquaporin Z (AqpZ) selectively remodel their local lipid environment in heterogeneous lipoprotein nanodiscs. First, we used gas-phase ejection to isolate the membrane protein with bound lipids from heterogeneous nanodiscs with different combinations of lipids. Second, we used solution-phase detergent extraction as an orthogonal approach to study membrane protein remodeling of lipids in the nanodisc with native MS. Our results showed that Triton X-100 and lauryldimethylamine oxide retain lipid selectivity that agrees with gas-phase ejection, but C8E4 distorts some preferential lipid interactions. Both approaches reveal that AmtB has a few selective binding sites for phosphatidylcholine (PC) lipids, is selective for binding phosphatidylglycerols (PG) overall, and is nonselective for phosphatidylethanolamines (PE). In contrast, AqpZ prefers either PC or PG over PE and prefers PC over PG. Overall, these experiments provide a picture of how membrane proteins bind different lipid head groups in the context of mixed lipid bilayers.


Asunto(s)
Acuaporinas , Proteínas de Transporte de Catión , Proteínas de Escherichia coli , Nanoestructuras , Acuaporinas/química , Proteínas de Transporte de Catión/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Nanoestructuras/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/química
20.
Biochim Biophys Acta Biomembr ; 1864(7): 183893, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219719

RESUMEN

We report on the orientation and location of synthetic pulmonary surfactant peptide KL4, (KLLLL)4K, in model lipid membranes. The partitioning depths of selectively deuterated leucine residues within KL4 were determined in DPPC:POPG (4:1) and POPC:POPG (4:1) bilayers by oriented neutron diffraction. These measurements were combined with an NMR-generated model of the peptide structure to determine the orientation and partitioning of the peptide at the lipid-water interface. The results demonstrate KL4 adopting an orientation that interacts with a single membrane leaflet. These observations are consistent with past 2H NMR and EPR studies (Antharam et al., 2009; Turner et al., 2014).


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Fosfatidilgliceroles , Espectroscopía de Resonancia Magnética , Péptidos/química , Fosfatidilgliceroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA