Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.453
Filtrar
1.
Nat Commun ; 15(1): 4986, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862544

RESUMEN

Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.


Asunto(s)
Membrana Celular , Adhesiones Focales , Talina , Vinculina , Talina/metabolismo , Talina/química , Adhesiones Focales/metabolismo , Membrana Celular/metabolismo , Vinculina/metabolismo , Vinculina/química , Humanos , Animales , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Integrinas/metabolismo , Integrinas/química , Citoplasma/metabolismo , Unión Proteica , Separación de Fases
2.
Nat Commun ; 15(1): 5220, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890374

RESUMEN

The transient receptor potential canonical type 3 (TRPC3) channel plays a pivotal role in regulating neuronal excitability in the brain via its constitutive activity. The channel is intricately regulated by lipids and has previously been demonstrated to be positively modulated by PIP2. Using molecular dynamics simulations and patch clamp techniques, we reveal that PIP2 predominantly interacts with TRPC3 at the L3 lipid binding site, located at the intersection of pre-S1 and S1 helices. We demonstrate that PIP2 sensing involves a multistep mechanism that propagates from L3 to the pore domain via a salt bridge between the TRP helix and S4-S5 linker. Notably, we find that both stimulated and constitutive TRPC3 activity require PIP2. These structural insights into the function of TRPC3 are invaluable for understanding the role of the TRPC subfamily in health and disease, in particular for cardiovascular diseases, in which TRPC3 channels play a major role.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato , Canales Catiónicos TRPC , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Células HEK293 , Sitios de Unión , Animales , Técnicas de Placa-Clamp , Unión Proteica
3.
Adv Biol Regul ; 92: 101033, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739986

RESUMEN

Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.


Asunto(s)
Señalización del Calcio , Núcleo Celular , Proteínas Tirosina Quinasas Receptoras , Humanos , Núcleo Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
4.
J Hazard Mater ; 474: 134756, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820747

RESUMEN

The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of gender­specific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCß4 was identified as a critical protein, which might be related to the gender­specific cognitive deficits in male rats. The up-regulated PLCß4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aß deposition in the hippocampus. These findings highlight that PLCß4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cadmio , Disfunción Cognitiva , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hipocampo , Lactancia , Fosfolipasa C gamma , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Animales , Femenino , Masculino , Embarazo , Cadmio/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Disfunción Cognitiva/inducido químicamente , Fosfolipasa C beta/metabolismo , Ratas Sprague-Dawley , Fosfatidilinositol 4,5-Difosfato/metabolismo , Exposición Materna , Ratas
5.
Arch Biochem Biophys ; 757: 110045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801966

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2), as well as other anionic phospholipids, play a pivotal role in various cellular processes, including ion channel regulation, receptor trafficking, and intracellular signaling pathways. The binding of volatile anesthetics and propofol to PIP2 leads to alterations in PIP2-mediated signaling causing modulation of ion channels such as ɣ-aminobutyric acid type A (GABAA) receptors, voltage-gated calcium channels, and potassium channels through various mechanisms. Additionally, the interaction between anionic phospholipids and G protein-coupled receptors plays a critical role in various anesthetic pathways, with these anesthetic-induced changes impacting PIP2 levels which cause cascading effects on receptor trafficking, including GABAA receptor internalization. This comprehensive review of various mechanisms of interaction provides insights into the intricate interplay between PIP2 signaling and anesthetic-induced changes, shedding light on the molecular mechanisms underlying anesthesia.


Asunto(s)
Anestésicos por Inhalación , Fosfatidilinositol 4,5-Difosfato , Propofol , Transducción de Señal , Propofol/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Animales , Anestésicos por Inhalación/farmacología , Receptores de GABA-A/metabolismo
6.
Mol Biol Cell ; 35(7): ar99, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776129

RESUMEN

The human fungal pathogen Candida albicans can cause lethal systemic infections due to its ability to resist stress from the host and to undergo invasive hyphal growth. Previous studies showed that plasma membrane MCC/eisosome domains were important for virulence by promoting the ability of Sur7 to mediate normal cell wall morphogenesis and stress resistance. The sur7Δ mutant displayed abnormal clusters of PI4,5P2, suggesting that misregulation of this lipid underlies the sur7Δ phenotype. To test this, we increased PI4,5P2 levels by deleting combinations of the three PI4,5P2 5' phosphatase genes (INP51, INP52, and INP54) and found that some combinations, such as inp51Δ inp52Δ, gave phenotypes similar the sur7Δ mutant. In contrast, deleting one copy of MSS4, the gene that encodes the 5' kinase needed to create PI4,5P2, reduced the abnormal PI4,5P2 clusters and also decreased the abnormal cell wall and stress sensitive phenotypes of the sur7Δ mutant. Additional studies support a model that the abnormal PI4,5P2 patches recruit septin proteins, which in turn promote aberrant cell wall growth. These results identify Sur7 as a novel regulator of PI4,5P2 and highlight the critical role of PI4,5P2 in the regulation of C. albicans virulence properties.


Asunto(s)
Candida albicans , Pared Celular , Proteínas Fúngicas , Morfogénesis , Candida albicans/metabolismo , Candida albicans/patogenicidad , Candida albicans/genética , Candida albicans/fisiología , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulencia , Estrés Fisiológico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Hifa/metabolismo , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética
7.
ACS Nano ; 18(20): 12737-12748, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717305

RESUMEN

Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.


Asunto(s)
Fusión de Membrana , Fosfatidilinositol 4,5-Difosfato , Electricidad Estática , Agua , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Agua/química , Liposomas/química , Proteínas SNARE/metabolismo , Proteínas SNARE/química , Catálisis
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749543

RESUMEN

Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7ß1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.


Asunto(s)
Colina Quinasa , Integrinas , Ratones Noqueados , Distrofias Musculares , Sarcolema , Vinculina , Animales , Ratones , Vinculina/metabolismo , Vinculina/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Integrinas/metabolismo , Colina Quinasa/metabolismo , Colina Quinasa/genética , Sarcolema/metabolismo , Humanos , Adhesiones Focales/metabolismo , Membrana Celular/metabolismo , Actinina/metabolismo , Actinina/genética , Músculo Esquelético/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Actinas/metabolismo , Modelos Animales de Enfermedad
9.
STAR Protoc ; 5(2): 102945, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38573863

RESUMEN

The minor phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is crucial for neurotransmission and has been implicated in Parkinson's disease. Here, we present a staining protocol for the analysis of activity-dependent changes of PI(4,5)P2 at synapses. We describe steps for stimulating and fixing murine hippocampal neurons, staining with probes for PI(4,5)P2 and a synaptic marker, and analysis by high-resolution microscopy. Our approach gives insights into local PI(4,5)P2 synthesis and turnover at synapses and can be extended to phosphoinositide lipids other than PI(4,5)P2. For complete details on the use and execution of this protocol, please refer to Bolz et al.1.


Asunto(s)
Hipocampo , Neuronas , Sinapsis , Animales , Ratones , Hipocampo/citología , Hipocampo/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Neuronas/citología , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/análisis , Fosfatidilinositol 4,5-Difosfato/metabolismo , Coloración y Etiquetado/métodos
10.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565949

RESUMEN

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Femenino , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Línea Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
11.
FEBS Lett ; 598(11): 1402-1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589226

RESUMEN

Overactivation of the epidermal growth factor receptor (EGFR) is critical for the development of multiple cancers. Previous studies have shown that the cell membrane is a key regulator of EGFR kinase activity through its interaction with the EGFR juxtamembrane domain (JM). However, the lipid recognition specificity of EGFR-JM and its interaction details remain unclear. Using lipid strip and liposome pulldown assays, we showed that EGFR-JM could specifically interact with PI(4,5)P2-or phosphatidylserine-containing membranes. We further characterized the JM-membrane interaction using NMR-titration-based chemical shift perturbation and paramagnetic relaxation enhancement analyses, and found that residues I649 - L659 comprised the membrane-binding site. Furthermore, the membrane-binding region contains the predicted dimerization motif of JM, 655LRRLL659, suggesting that membrane binding may affect JM dimerization and, therefore, regulate kinase activation.


Asunto(s)
Membrana Celular , Receptores ErbB , Fosfatidilserinas , Unión Proteica , Dominios Proteicos , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Membrana Celular/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Sitios de Unión , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Liposomas/metabolismo , Liposomas/química , Multimerización de Proteína , Secuencia de Aminoácidos
12.
J Biol Chem ; 300(5): 107213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522519

RESUMEN

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Asunto(s)
Membrana Celular , Ebolavirus , Ensamble de Virus , Liberación del Virus , Humanos , Sustitución de Aminoácidos , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Ebolavirus/genética , Células HEK293 , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Mutación , Nucleoproteínas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Unión Proteica , Electricidad Estática , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/química , Virión/metabolismo , Virión/genética
13.
Redox Biol ; 71: 103097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442648

RESUMEN

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.


Asunto(s)
Peróxido de Hidrógeno , Proteínas del Tejido Nervioso , Fosfatidilinositoles , Peróxido de Hidrógeno/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Membrana Celular/metabolismo , Transducción de Señal , Endocitosis
14.
J Clin Lab Anal ; 38(7): e25031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514901

RESUMEN

BACKGROUND: Primary cilia are static microtubule-based structures protruding from the cell surface and present on most vertebrate cells. The appropriate localization of phospholipids is essential for cilia formation and stability. INPP5E is a cilia-localized inositol 5-phosphatase; its deletion alters the phosphoinositide composition in the ciliary membrane, disrupting ciliary function. METHODS: The EGFP-2xP4MSidM, PHPLCδ1-EGFP, and SMO-tRFP plasmids were constructed by the Gateway system to establish a stable RPE1 cell line. The INPP5E KO RPE1 cell line was constructed with the CRISPR/Cas9 system. The localization of INPP5E and the distribution of PI(4,5)P2 and PI4P were examined by immunofluorescence microscopy. The fluorescence intensity co-localized with cilia was quantified by ImageJ. RESULTS: In RPE1 cells, PI4P is localized at the ciliary membrane, whereas PI(4,5)P2 is localized at the base of cilia. Knocking down or knocking out INPP5E alters this distribution, resulting in the distribution of PI(4,5)P2 along the ciliary membrane and the disappearance of PI4P from the cilia. Meanwhile, PI(4,5)P2 is located in the ciliary membrane labeled by SMO-tRFP. CONCLUSIONS: INPP5E regulates the distribution of phosphoinositide on cilia. PI(4,5)P2 localizes at the ciliary membrane labeled with SMO-tRFP, indicating that ciliary pocket membrane contains PI(4,5)P2, and phosphoinositide composition in early membrane structures may differ from that in mature ciliary membrane.


Asunto(s)
Cilios , Monoéster Fosfórico Hidrolasas , Cilios/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Humanos , Línea Celular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas CRISPR-Cas , Fosfolípidos/metabolismo
15.
J Phys Chem B ; 128(9): 2134-2143, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38393820

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a critical lipid for cellular signaling. The specific phosphorylation of the inositol ring controls protein binding as well as clustering behavior. Two popular models to describe ion-mediated clustering of PIP2 are Martini3 (M3) and CHARMM36 (C36). Molecular dynamics simulations of PIP2-containing bilayers in solutions of potassium chloride, sodium chloride, and calcium chloride, and at two different resolutions are performed to understand the aggregation and the model parameters that drive it. The average M3 clusters of PIP2 in bilayers of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and PIP2 bilayers in the presence of K+, Na+, or Ca2+ contained 2.2, 2.6, and 6.4 times more PIP2 than C36 clusters, respectively. Indeed, the Ca2+-containing systems often formed a single large aggregate. Reparametrization of the M3 ion-phosphate Lennard-Jones interaction energies to reproduce experimental osmotic pressure of sodium dimethyl phosphate (DMP), K[DMP], and Ca[DMP]2 solutions, the same experimental target as C36, yielded comparably sized PIP2 clusters for the two models. Furthermore, C36 and the modified M3 predict similar saturation of the phosphate groups with increasing Ca2+, although the coarse-grained model does not capture the cooperativity between K+ and Ca2+. This characterization of the M3 behavior in the presence of monovalent and divalent ions lays a foundation to study cation/protein/PIP2 clustering.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Cationes , Sodio
16.
Sci Rep ; 14(1): 291, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168911

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the ß2 adrenergic receptor (ß2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on ß2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of ß2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, ß2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of ß2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease ß2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.


Asunto(s)
Endocitosis , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Membrana Celular/metabolismo , Receptores de Angiotensina/metabolismo , Hormonas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-37714261

RESUMEN

Phosphoinositides are phosphorylated derivatives of phosphatidylinositol, a phospholipid that is synthesised at the endoplasmic reticulum. The plasma membrane contains the enzymes to phosphorylate phosphatidylinositol and is therefore rich in the phosphorylated derivatives, PI4P and PI(4,5)P2. PI(4,5)P2 is a substrate for phospholipase C and during cell signaling, PI(4,5)P2 levels are reduced. Here I discuss a family of proteins, phosphatidylinositol transfer proteins (PITPs) that can restore PI(4,5)P2 levels.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato , Proteínas de Transferencia de Fosfolípidos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal
18.
Biophys J ; 123(14): 2001-2011, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38142298

RESUMEN

Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.


Asunto(s)
Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Fosfatidilinositol 4,5-Difosfato , Fosfatidilserinas , Unión Proteica , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/química , Péptidos/química , Péptidos/metabolismo , Dominios Proteicos , Agua/química , Membrana Celular/metabolismo , Membrana Celular/química , Secuencia de Aminoácidos
19.
J Cell Sci ; 136(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815455

RESUMEN

Phosphatidylinositol (PI)-4-phosphate (PI4P) is a lipid found at the plasma membrane (PM) and Golgi in cells from yeast to humans. PI4P is generated from PI by PI4-kinases and can be converted into PI-4,5-bisphosphate [PI(4,5)P2]. Schizosaccharomyces pombe have two essential PI4-kinases - Stt4 and Pik1. Stt4 localizes to the PM, and its loss from the PM results in a decrease of PM PI4P and PI(4,5)P2. As a result, cells divide non-medially due to disrupted cytokinetic ring-PM anchoring. However, the localization and function of S. pombe Pik1 has not been thoroughly examined. Here, we found that Pik1 localizes exclusively to the trans-Golgi and is required for Golgi PI4P production. We determined that Ncs1 regulates Pik1, but unlike in other organisms, it is not required for Pik1 Golgi localization. When Pik1 function was disrupted, PM PI4P but not PI(4,5)P2 levels were reduced, a major difference compared with Stt4. We conclude that Stt4 is the chief enzyme responsible for producing the PI4P that generates PI(4,5)P2. Also, that cells with disrupted Pik1 do not divide asymmetrically highlights the specific importance of PM PI(4,5)P2 for cytokinetic ring-PM anchoring.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Citocinesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfotransferasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
20.
Cell Rep ; 42(10): 113244, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838947

RESUMEN

Anomalous aggregation of α-synuclein (α-Syn) is a pathological hallmark of many degenerative synucleinopathies including Lewy body dementia (LBD) and Parkinson's disease (PD). Despite its strong link to disease, the precise molecular mechanisms that link α-Syn aggregation to neurodegeneration have yet to be elucidated. Here, we find that elevated α-Syn leads to an increase in the plasma membrane (PM) phosphoinositide PI(4,5)P2, which precipitates α-Syn aggregation and drives toxic increases in mitochondrial Ca2+ and reactive oxygen species leading to neuronal death. Upstream of this toxic signaling pathway is PIP5K1γ, whose abundance and localization is enhanced at the PM by α-Syn-dependent increases in ARF6. Selective inhibition of PIP5K1γ or knockout of ARF6 in neurons rescues α-Syn aggregation and cellular phenotypes of toxicity. Collectively, our data suggest that modulation of phosphoinositide metabolism may be a therapeutic target to slow neurodegeneration for PD and other related neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , Fosfatidilinositol 4,5-Difosfato , Fosfotransferasas (Aceptor de Grupo Alcohol) , Agregación Patológica de Proteínas , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Agregación Patológica de Proteínas/metabolismo , Transducción de Señal , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA